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Abstract

In this article we revisit the paper by Teunter (2004), appeared in Computers and Industrial
Engineering. For this model Teunter proposed an approach leading to an approximate solution. Here we
propose an optimization procedure, which leads to policies with integer set up numbers in the production

and the remanufacturing facilities i.e. to the optimal policy.
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1. Introduction

Teunter (2004) presented an inventory model, where the stationary demand is satisfied though two
modes. One is by new ordered/produced products and the other by recovered used products which
recovery brings back to ‘as good as new’ condition. All relevant costs i.e. ordering/production and
recovery set up, holding new/recovered items, holding recoverable items are constant. He considers
policies that alternate one production lot with a fixed number R of recovery lots respectively, in short (1,
R) policies and one recovery lot with a fixed number P of production lots, in short (P, 1) policies. In this
class of policies Teunter derived simple closed type formulas for the optimal procurement/production
and recovery lot sizes. These formulas are more general than the ones given in Nahmias and Rivera
(1979) and Koh, Hwang, Sohn and Ko (2002) as they are valid for infinite and finite recovery and
production rates respectively.

The approach used in his analysis is to minimize the total cost function Tt C(Q,.0,), wrt. to the
procurement/production O, and recovery Q. lot sizes, treating them as continuous variables. Treating lot

sizes as continuous variables, in cases where these have to be integer, is common practice in inventory
control literature and really it does not create any problem. He then obtained R, P using equations
connected the above variables. The so obtained values are truncated, if necessary, to the nearest integer

and the so obtained policy is applied. In the case of Teunter’s model the obtained values of 9,, O, are

used to calculate P and R. If the values for R or P are not integers the policy cannot be applied. To
overcome this difficulty, the author suggests suitable modifications. He first truncates the obtained values
of R, P to the nearest integer, greater or equal to one. Next using these values he modifies the initially

obtained values of @, m (1, R) policies and the Q, in (P, 1) policies. The resulting policy can be applied

and the relevant cost is calculated. In this paper we present an approach, which leads directly to the

optimal policy with R, P integers. These values are then used to obtain the lot sizes Q,andQ, and to

calculate the optimal cost.



2. Model

The notation in Teunter’s (2004) model is:

d Demand rate

v i Return fraction (return rate /7 )

p Production rate

¥ Recovery rate

. Ordering (setup) cost per production lot

K, Ordering (setup) cost per recovery lot

h, Holding cost per recoverable item per time unit
h, Holding cost per serviceable item per time unit
Qp Production lot size

0, Recovery lot size

2.1. Policy (1,R): One manufacturing against R remanyfacturing opportunities

For this class of policies, the total cost per unit of time is given by:

1C(0,. 0, K,d(1-1) K, A ((1- /)X1-d/p)Q, + f(1-d/r)Q,) . hf(Q,+(1-d/rQ.)

1)
o, 0, 2 2
The variables O, , Q, and R are connected via the relation
RO.(A-1)=0,f. (2)

Teunter minimized TC(Q_, Q,) wrt. O, 0 and using (2) he obtained R. The so obtained R is not in

general integer. To make it integer, he truncates this R to the nearest integer, say fi‘=max{1, [R]},
greater or equal to one and using this truncation, he replaces the initially obtained Q, value by the one

obtained though the relation



Here we shall approach the solution of this problem in a different way.

From (2) we have that:
o, f
=— 3
@ Ra-n &
Replacing this O, into (1) the total cost per unit of time becomes:
_K,d(-f)+RK.d(1- f) (- fX1-d/p) hf, Qf*(A—d/r)h +h)
TC(Q,.R= 0, +0,[ 5 =5 2RA-7) N C)
If we set
A=K d(1- )+ RK,d(1- f)=4, + A,R, where A=K d(1-f)=0 and 4,=K d(1- ()20,
p=h0=N0-d/p) Bf o o SU-dNb+h) G o _SA-dihrh) o o
5 2 2R(1- 1) R 2(1- 1)
we can rewrite 7C( 0,.R) as:
TC(QP,R}=Qi+QP(B+C)- (6)

P

Now the problem becomes: find the minimum of 7C(Q,.R) w.r.t. R and O, . The approach we follow is
first finding the minimum of this function w.r.t. Q,. The minimizing point will be a function of R, say
Q,(R) . Replaces this into the objective function and minimize the objective w.r.t. R.

From (6) we see that TC( Q,.R) is convex in O, and so attains its minimum at

cpve | A _ [4t+R4,
Q"’(R)_\IB+C"\j B+5- @)
R

Substituting O (R) into (6) yields:

TC(Q,(R) .R)= 2\/4B+ A4,C, +AZBR+%. (8)

Since R is integer we use the difference function
ATC(Q,,R)=TC(Q,,R)-TC(Q,,R-1), R>2

for the location of optimal R which in our case is:



g 4G
2(4,B RR- 1))

AIC(Q;,R)zIC(Q;,R)-TC(Q;,R—I)—
\/AIB-!-AZC ~:—1‘K’AZB+"4"l \/4B+A2C +(R- I)AZB+ A'C

®

From (9) we see that if %s 2, then ATC(Q,,R) =0 for any R>2 and the optimum is at R" =1.

If this is not the case, then there always exists a R*>2 such that AT C(Q;,R)<0for all R<R and
ATC(Q;,R) >0 for allR>R". Simple algebra on these inequalities gives that this R’ satisfies the double
inequality

R'(R‘—1)<-‘§'2%£R'(R‘+1), R >2. (10)

In case that R'(R’ +1) =%‘2—%—, we have two equivalent solutions and we agree to keep the smallest one.

The integer value of R* obtained from (10), is used in (7) to calculate Q; (R) and the resulting policy can

be implemented to give the cost.
We apply this approach to the example proposed by Teunter. The data of the example are:

d =1000, f=0.8, p=5000, »=3000, K,=20, K, =5, b, =2 and h =10.
With these data we have 4, =4000, 4, =1000, B=1.6, C, =12.8 and the cost function is:

4000 +1000R 12.8
TC(QP,RF——Q— G,(1.6+—5).

P

From (10) we get R'=6 and (7) gives O’ =51.75 and finally TC( 0., R y=386.44 . From (3) we find
Q. =34.5. The policy given by Teunter has 0,=53.03, 0/ =35.35 and TC(Q,, R )=386.55. In this

example the deviations for the lot sizes and the total cost are negligible. Computational experience shows
that the two approaches give quite similar results, in case that the exact R obtained using Teunter’s
approach is greater than one. In case that this R is smaller than one the deviations are significant. This is
evident in the examples given in table 1 and suggests that in this case the approximate approach used by

Teunter leads to costs much higher than the optimal.



2.2. Policy (P,1): P manufacturing opportunities against one remanufacturing

The total cost per unit time in this case is:

10(0,.0,)- K,dd-f) Kdf h@-fX1-d/p)g,+f1-d/rQ,) L ha-£ajng, an
Qp Q,- 2 2
and P is fully determined by the lot-sizes via the relation
Qr(]'—f)=Ppr. (12)

Teunter minimized 7C(Q,, 0,) w.rt. Q,, 0,and using (12) he obtained P. The so obtained P is not in

general integer. To make it integer, he truncates this P to the nearest integer, say;’ =max{l, [P]}, greater

or equal to one and using this truncation, he replaces the initially obtained Q. value by the one obtained

though the relation:
0 = PO '
r ]_ _ f
Here we shall approach the solution of this problem in a different way.
From (12) we have that:
1-—
0,= 20-7) (13)

Pf

So using (13), the total cost per unit (11) becomes:

PRA+EY | o B0-SYA-d/p) hfl=d]r) hQ-fdjr)

0. 2Pf 2 2 1. a9

IC(Q, .Py=

If we set

A=PK,df +K,df =P4,+ 4,, where A =K,df >0 and 4,=K,df >0,

p=h0-/PA~d/p) hfQ-dr) hA-fd/r)_B,

2Pf 2 2 P
where B = h (l-f;:’;l—d/P) >0 ande=h’f(12_d/r) Lk —zfd/r) >0 a15)
we can rewrite 7C( 0, ,P) as:



TC(Q, P £-+Q,B- 16)

r

From (16), we see that TC( O, ,P) is convex in O, and attains its minimum at

. A
_P - _—= —_—
Q. (P) \/; (17)
Substituting (17) into (16) yields:
. = 4,5

IC(Q,(P),P)=2,|AB + 4,B, +A]BzP+T. (18)

The difference function
ATC(Q],P)=TC(Q},P)-TC(Q,,P-1), P>2
of TC(Q’,R) shows that:
2(432 - Pgiﬁl))
ATC(Q,,P)=TC(Q.,P)-TC(Q,P-1)= —. (19)
\/431 +4,B,+PAB, + A}B' +\/A,B] +4,B, +(P-1)4B, +i;2fll
Following the same reasoning as previously we can see that if
0< 45 <2
B,

2
then the optimum is atP’=1. If this is not the case, then there always exists a P">2 such

that ATC(Q], P) <0 for all P< P'and ATC(Q',P)=0 for allP> P". Simple algebra on these inequalities

gives that this P” satisfies the double inequality

P‘(P'—l)<%sP'(P'+l), P =2, (20)

2

In case that P*(P" +1) = AZ;:‘ » we have two equivalent solutions and we agree to always take the smallest

2
one.

For the Teunter’s example we have that: 4, =16000, 4, =4000, B =0.2 and B, =3.4. The cost

function is:



TEe G, 10000 4000 6""‘”;* 2 s pea +22).

From (20), we get P'=1 and (17) gives O, = 74.54 and finally 7C(Q’ , P*)=536.66. From (13) we find
that 0’ =18.63 . The policy given by Teunter has 0,=70.71, O} =282.8 and TC(Q;, R' }=1088.9. In this

example the deviations for the lot sizes and the total cost are very significant. Computational experience
shows that the two approaches give quite similar results, in case that the exact P obtained using Teunter’s
approach is greater than one. In case that this P is smaller than one the deviations are significant. This is
evident in the examples given in table 2 and suggests that in this case the approximate approach used by

Teunter leads to costs much higher than the optimal.

3. Conclusion

In this paper we propose a solution method for Teunter’s (2004) model which leads to integer
values for the parameters R, P in the set of policies (1, R) and (P,1) and subsequently to the optimal
policy. This is an exact approach and comparing the results obtained, to those given by Teunter’s
approximate method, we see that in some cases Teunter’s algorithm performs very well, while in other

cases the cost deviations from the optimal are significant and his method should not be applied.
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On Perron-Frobenius property of matrices having some negative
entries

Dimitrios Noutsos!

Abstract

We extend the theory of nonnegative matrices to the matrices that have some
negative entries. We present and prove some properties which give us information,
when a matrix possesses a Perron-Frobenius eigenpair. We apply also this theory by
proposing the Perron-Frobenius splitting for the solution of the linear system Az = b
by classical iterative methods. Perron-Frobenius splittings constitute an extension of
the well known regular splittings, weak regular splittings and nonnegative splittings.
Convergence and comparison properties are given and proved.

AMS (MOS) Subject Classifications: Primary 65F10
Keywords: Perron-Frobenius theorem, nonnegative matrices, Perron-Frobenius splitting
Running Title: On Perron-Frobenius property

1 Introduction

In 1907, Perron [14] proved that the dominant eigenvalue of a matrix with positive entries
is positive and the corresponding eigenvector could be chosen to be positive. With the term
dominant eigenvalue we mean the eigenvalue which corresponds to the spectral radius. Later
in 1912, Frobenius [7] extended this result to irreducible nonnegative matrices. Since then
the well known Perron-Frobenius theory has been developed, for nonnegative matrices and
the well known Regular, Weak Regular and Nonnegative Splittings have been introduced
and developed for the solution of large sparse linear systems by iterative methods (Varga
[16], Young [20], Berman and Plemmons [2], Bellman [1], Woznicki [18], Csordas and Varga
[5], Neumann and Plemmons [10], Miller and Neumann [9], Marek and Szyld [8], Woznicki
[19], Climent and Perea [4]). (An excellent account of all sorts of splittings can be found
in Nteirmentzidis [12]). Such linear systems are yielded from the discretisation of elliptic
and parabolic partial differential equations, from integral equations, from Markov chains
and from other applications (see, e.g., [2]). In 1985, O’Leary and White [13] introduced the
theory of Multisplittings which is very useful for the solution of linear systems on parallel
computer architectures. Since then many researchers, based on their theory, have proposed
various Multisplitting techniques (Neumann and Plemmons [11], Bru, Elsner and Neumann
[3]; Elsner [6], White [17] and others).

Recently, Tarazaga, Raydan and Hurman [15], have given a sufficient condition that guar-
antees the existence of the Perron-Frobenius eigenpair, for the class of symmetric matrices

Department of Mathematics, University of Ioannina, GR-451 10 Ioannina, Greece (E-mail:
dnoutsos@cc.uoi.gr)
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which have some negative entries. Their result was obtained by studying some convex and
closed cones of matrices.

It is obvious, from the continuity of the eigenvalues and the entries of the eigenvectors, as
functions of the entries of matrices, that the Perron-Frobenius theory may hold also in the
case where the matrix has some absolutely small negative entries. This observation brings up
some questions. E.g., How small could these entries be? What is their distribution? When
such a matrix looses the Perron-Frobenius property? These questions are very difficult to
answer. Tarazaga et al in [15] gave a partial answer to the first question by providing a
sufficient condition for the symmetric matrix case.

In this paper the behavior of such matrices is studied. Sufficient and necessary condi-
tions as well as monotonicity properties are stated and proved, for the general case of real
matrices. So, we answer implicitly the above questions by extending the Perron-Frobenius
theory of nonnegative matrices to the class of matrices that possess the Perron-Frobenius
property. Finally, we apply this theory by introducing the Perron-Frobenius splitting for the
solution of linear systems by classical iterative methods. This splitting is an extension and a
generalization of the well known regular, weak regular and nonnegative splittings. We also
present and prove convergence and comparison properties for the proposed splitting.

This work is organized as follows: In Section 2 the main results of the extension of
the Perron-Frobenius theory are stated and proved. In Section 3 we propose the Perron-
Frobenius splitting and give convergence and comparison properties based on it. As the
theory is being developed, various numerical examples are given in the text to illustrate it.

2 Extension of the Perron-Frobenius theory

We begin with our theory by giving two definitions:

Definition 2.1 A matriz A € IR™" possesses the Perron-Frobenius property if its dominant
eigenvalue \; is positive and the corresponding eigenvector 1) is nonnegative.

Definition 2.2 A matriz A € IR™ possesses the strong Perron-Frobenius property if its
dominant eigenvalue \; is positive, simple (A > | N\, 1 =2,3,---,n) and the corresponding
eigenvector 1) is positive.

It is noted that Definition 2.1 is the most general of the relevant ones given so far.
The analogous definition in the well known Perron-Frobenius theory is that for nonnegative
matrices. On the other hand, in Definition 2.2 a subset of matrices of Definition 2.1 is
defined, which is analogous to that of irreducible and primitive nonnegative matrices. The
next two theorems give sufficient and necessary conditions for the second class of matrices.

Theorem 2.1 For a symmetric matriz A € IR™" the following properties are equivalent:
i) A possesses the strong Perron-Frobenius property.
i) There ezists an integer ko > 0 such that A >0V k > k.

Proof: (i = ): Since A possesses the strong Perron-Frobenius property, its eigenvalues
can be ordered as follows:

AL =p(A) > [Xa| = |A3] = -+ = |Anl,
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where A, is a simple eigenvalue with the corresponding eigenvector z(1) € R" being positive.
We choose an arbitrary nonnegative vector z(® € R with [|z(¥||, = 1. We expand z( as
a linear combination of the eigenvectors of A: z(® = ¥, ¢;z(®. Since A is symmetric the
eigenvectors constitute an orthogonal basis. So, the coefficients ¢;’s are the inner products
¢; = (2©,20), i=1,2,--- n, which means that ¢, > 0. We apply now the theorem of the
Power method. So, the limit of A*z(%) tends to the eigenvector z(!) as k tends to infinity.
This means that for a certain () > 0 there exists an m such that A¥z© > 0 for all k¥ > m.
If we choose the largest of all m’s over all initial choices z(?) > 0, specifically

ky = max {mlAzk>0Vk2m},
USQ;(D)EIRT*, ”3(0)”2:1

we take that for all z(? > 0, A*z(®) > 0 for all k > ko, which proves our assertion.

(44 = ¢): From the Perron-Frobenius theory of nonnegative matrices, the assumption
A* > 0 means that the dominant eigenvalue of A* is positive and simple while the corre-
sponding eigenvector is positive. It is well known that the matrix A has as eigenvalues the
k™ roots of those of A* with the same eigenvectors. Since it happens Yk > kg, A possesses
the strong Perron-Frobenius property. g

Theorem 2.2 For a matriz A € R™ the following properties are equivalent:
i) Both matrices A and AT possess the strong Perron-Frobenius property.
i) There ezists an integer ko > 0 such that A* > 0 for all k > ky.

Proof: (i = 4i): Let A= XDX! be the Jordan canonical form of the matrix A. We
assume that the simple eigenvalue \; = p(A) is the first diagonal entry of D. So the Jordan
canonical form can be written as

A 0 W7
A = [:U(l}]Xn,'n,—l] [ 01 { Dn—]_ o :’ [ Yy__]_ :I ) (21)

where y(1" and Y15 are the first row and the matrix formed by the last n — 1 rows of X 1,
respectively. Since A possesses the strong Perron-Frobenius property, the eigenvector z(!) is
positive. From (2.1), the block form of AT is

3 0 (nt
Af= [y(l)lYnjll,n] [ 01 ||DT ] [ }?T } . (2.2)

n—1l,n—1 nn—1

The matrix DI_, . _, is the block diagonal matrix formed by the transposes of all Jordan
blocks except A;. It is obvious that there exists a permutation matrix P € R* "~ such
that the associated permutation transformation on the matrix DT, .y transposes all the
Jordan blocks. So, Dy -1 = PTDY P and relation (2.2) takes the form:

n—1,n—1

T _ [ (OyT 1lo][1] o0 M| 0 1]0 1] 0 BT
A = [y |Yn_1,n][olpl[0|PT Ong—l,n—l OlP UIPT XT

n,n—1

}T
_ (1) T Al | 0 17(,1
[y [K},—l,n] [ O IDn—l,n-l X,-I b) (23)

n,n—1
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where Yo, = YZ, Pand X/, ; = PTXZ, ;. The last relation is the Jordan canonical
form of AT which means that y(!) is the eigenvector corresponding to the dominant eigenvalue
A1. Since AT possesses the strong Perron-Frobenius property, y(*) is a positive vector or a
negative one. Since y™7 is the first row of X~ we have that (y(*),z()) = 1 implying that
y() is a positive vector.

We return now to the Jordan canonical form (2.1) of A and form the power A*

k (T
Ak — [a:(l)I-Xn,n—l] [ A1 | 0 :| Y ]

0 | Dk—l,n—l L Yn—l,n
or | i (a3
4 1 0 yt
ok ) X e )
Alf‘ [:I? | s 1] 0 | %Dﬁ—l,n—l i Yn—l,n

Since A is the simple dominant eigenvalue, we get that

lim —1—JD"C

= (.
E=vne )\ff n—1,n—1

So,
lim ikAk = J:(l)y(l)T > 0.

k—oo /\1
The last relation means that there exists an integer kg > 0 such that A¥ > 0 for all k > kg
and the first part of Theorem is proved.

(4 = 4): From the Perron-Frobenius theory of nonnegative matrices, the assumption
A* > 0 means that the dominant eigenvalue of A* is positive and simple while the corre-
sponding eigenvector is positive. Considering the Jordan canonical form of A*, V& > ko, we
get that the matrix A has as the dominant eigenvalue the positive k% root of the one of A*
with the same eigenvector. So, A possesses the strong Perron-Frobenius property. The proof
for the matrix A7 is the same by taking (4%)T = (AT)*F > 0. O

We observe that Theorem 2.1 is a special case of Theorem 2.2. Nevertheless, it is stated
and proved since the proof is quite different and easier than that of Theorem 2.2.
In the sequel some statements with necessary conditions only follow.

Theorem 2.3 If AT € R™ possesses the Perron-Frobenius property, then either

> a5 = pl4) Vi=10n, 2.4

miin (Zﬁ: aij) <p(4) < max (i: aij) . " (2:5)

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in
(2.5) are strict.
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Proof: Let that (p(A),y) is the Perron-Frobenius eigenpair of the matrix AT and £ € R™
is the vector of ones ( =11 1) ) We form the product y7 A¢:

'ﬂ‘.
j=1 Q15

yTAE — yT i : J

Z (yzz%) < max (Z a,J) > (2.6)

i=1 =1
n
j=1 Qnj

Similarly, we have that

yT A€ = Z (yi Z: au) > mm (Z azj) i Y;. (2.7)

i=1 j=1 =1
On the other hand we get

yTAE = €7 ATy = p(A)ET Zyz (2.8)

i=1
Relations (2.6), (2.7) and (2.8) give us relation (2.5). It is obvious that the inequalities
in (2.5) become equalities if max; (Z?=1 a,-j) = min; (E?=1 a,z»j), which proves the equality
(2.4). It is also obvious that the inequalities in (2.6) and (2.7) become strict if y > 0. So,

the inequalities in (2.5) become strict if A7 possesses the strong Perron-Frobenius property.
O

Note that it is necessary to have max; (23—1 %) > 0, otherwise Theorem 2.3 does not

hold and so, AT does not possess the Perron-Frobenius property. On the other hand, it is
not necessary to have min; (Z}Ll at-j) 2> 0 as is shown in the following example.

11 -3
A= -4 1 1 |.
8 5 8

The vector of the row sums of A is (—1 —2 21)7, while AT possesses the strong Perron-
Frobenius property with the Perron-Frobenius eigenpair: (6.868 , (0.4492 0.6225 0.6408)T).

Example 2.1 Let

By interchanging the roles of A and AT, Theorem 2.3 gives an analogous result for the
column sums. This is presented in the following corollary.

Corollary 2.1 If A € R™" possesses the Perron-Frobenius property, then either

Zn:aij =p(4) Vj=1(1)n, (2.9)

=1

min (an aij) < p(4) < max (i aa-j) . (2.10)

7o\i=1 i=1

or

Moreover, if A possesses the strong Perron-Frobenius property, then both inequalities in
(2.10) are strict.
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We define now the space P of all vectors £ > 0 with at least one component being
positive and its subspace P*, the hyperoctant of vectors z > 0. Then, the previous results
are generalized as follows.

Theorem 2.4 If AT € IR™ possesses the Perron-Frobenius property and z € P*, then
either

n . .
i;% — p(A) Vi=1(1)n, (2.11)
or . .
7 x’i 2 i

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in
(2.12) are strict and

sup {min (M)} = p(A) = inf {max (M) } . (2.13)

TeP* % Z; zeP* i T;

Proof: Let z € P*. We define the diagonal matrix D = diag(z;, s, -, T,) and consider
the similarity transformation B = D™'AD (see Varga [16], Theorem 2.2). Then the entries
of B are b;; = igfl Since B is produced from A by a similarity transformation and D and
D~ are both nonnegative matrices, we obtain that BT possesses also the Perron-Frobenius
property. As a consequence we have

n n
in [ 2= %%\ |« Jo4) < inf Zj=1 H%5 9.14
sap {min (B2 )| <o < i {mae (B2 ) | a9

which implies (2.12). We choose now the Perron-Frobenius eigenvector y in the place of z.
It is easily seen that inequalities (2.12) become equalities, which means that those in (2.14)
become also equalities and the proof is complete. O

By interchanging the roles of A and A”, Theorem 2.4 gives us analogous results for the
column sums stated in the corollary below.

Corollary 2.2 If A € IR™™ possesses the Perron-Frobenius property and x € P*, then either
¥ D

n o .
Q5T j

ELA — p(d) ¥i=1(1)n, (2.15)
or n n
- (2—“—’-) 2 ()5 e (2——?—) | (2.16)

Moreover, if AT possesses the strong Perron-Frobenius property, then both inequalities in
(2.12) are strict and

sup {m_in (&E;ﬂﬁ)} = p(A)= inf {max (M) } ; (2.17)

TEP* 1 i TEP* 1 :Bi
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In the sequel we give some monotonicity properties concerning the dominant eigenvalue
in the case where the matrices possess the Perron-Frobenius property. It is well known that
the eigenvalues and the entries of the eigenvectors are continuous functions of the entries of
a matrix A. So, if A possesses the strong Perron-Frobenius property, then a perturbation
of A, A= A+ FE provided ||E|| is small enough, possesses also the strong Perron-Frobenius
property. It is also well known, from the theory of nonnegative matrices, that the dominant
eigenvalue of a nonnegative matrix A is a nondecreasing function of the entries of A, when
A is reducible, while if A is an irreducible matrix, it is a strictly increasing function. Then
two questions come up: What happens to the monotonicity in case the matrices possess
the Perron-Frobenius property? Does the property of “possessing the Perron-Frobenius
property” still hold when the entries of A increase, as it does in the nonnegative case?
Unfortunately, the answer to the second question is not positive. It depends on the direction
in which we increase the entries, as we will see later. First we give some properties which
provide an answer to the first question.

Theorem 2.5 If the matrices A, B € IR™" are such that A < B, and both A and BT possess
the Perron-Frobenius property (or both AT and B possess the Perron-Frobenius property),
then

p(A) < p(B). (2.18)

Moreover, if the above matrices possess the strong Perron-Frobenius property and A # B,
then the inequality in (2.18) is strict.

Proof: Let z > 0 be the Perron-Frobenius eigenvector of A associated with the dominant
eigenvalue A4 and let y > 0 be the Perron-Frobenius eigenvector of BT associated with the
dominant eigenvalue Ag. Then the following equalities hold

y' Az = M ayFz, yT'Bz = AgyTz.
Since A < B, we. can write B = A+ C, where C > 0. So,
y'Br = yT(A+ C)z = yT Az + yTCz > yT Az

Assuming that 37z > 0, the above relations imply that Ag > A4. The case where y7z = 0
is covered by using a continuity argument. For this we consider the matrices A’ and B’
which are small perturbations of the matrices A and B, respectively, such that for the corre-
sponding perturbed eigenvectors we will have ¢z > 0. The above inequality holds for the
perturbed eigenvalues and because of the continuity the same property holds for the eigen-
values of A and B. It is obvious that if we follow the same reasoning we can obtain the same
result in case both AT and B possess the Perron-Frobenius property. It is also obvious that
the inequality becomes strict in case the associated Perron-Frobenius properties are strong. O

We note that the above property does not guarantee the existence of the Perron-Frobenius
property for an intermediate matrix C' (A < C < B) and does not give any information about

p(C).
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Theorem 2.6 Let (i) AT € R™ possess the Perron-Frobenius property and = > 0 (z #0)
be such that Az —ax > 0 for a constant o > 0 or (ii) A € IR™ possess the Perron-Frobenius
property and x > 0 (z # 0) be such that z7A — az” > 0 for a constant o > 0. Then

a < p(A). (2.19)
Moreover, if Ax — ax > 0 or z7A — azT > 0, then the inequality in (2.19) is strict.

Proof: For hypothesis (i), let ¥ > 0 be the Perron-Frobenius eigenvector of A associated
with p(A). Then, the following equivalence holds

¥ (Az — az) > 0 <> (p(4) — a)yTz > 0.

If yTx > 0, then the inequality (2.19) holds. In the case where yTz = 0 we recall the pertur-
bation argument used in Theorem 2.5 to prove the validity of (2.19). If Az — az > 0, the
above inequalities become strict and therefore (2.19) becomes strict. For hypothesis (ii) the
proof is similar. O

The above theorem is an extension of Corollary 3.2 given by Marek and Szyld in [8], for
nonnegative matrices. The following theorem is also an extension of Lemma 3.3 of the same

paper [8].

Theorem 2.7 Let (i) AT € IR™™ possess the Perron-Frobenius property and z > 0 be such
that ax — Az > 0 for a constant o > 0 or (ii) A € R™™ possess the Perron-Frobenius
property and x > 0 be such that az” — zTA > 0 for a constant & > 0. Then

p(A) < a. (2.20)
Moreover, if ax — Az > 0 or az” — 2T A > 0, then the inequality in (2.20) becomes strict.

Proof: As in the previous theorem we give the proof only for hypothesis (i). Let y > 0
be the Perron-Frobenius eigenvector of A associated with p(A4). Then, we have

Y (0z — Az) 2 0 <= (a = p(4))y"z > 0.

Since z > 0 we have that yTz > 0 and the inequality (2.20) holds. If oz — Az > 0, the above
inequalities become strict and therefore (2.20) becomes strict. a

We remark that the condition z > 0 is necessaty. This is because for z > 0 such that
Az = 0, the condition az — Az > 0 holds for any o > 0, but the inequality (2.20) is not true
for any a > 0.

We give now two monotonicity properties depending on the direction in which the entries
of a matrix increase.
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Theorem 2.8 Let A € R™ possess the Perron-Frobenius property with x > 0 the associated
eigenvector. Then, for the matriz B such that

B=A+exy’, €>0, y>0 (2.21)

there holds
p(4) < p(B). (2.22)

Moreover, if A possesses the strong Perron-Frobenius property and y > 0 (y # 0), then
inequality in (2.22) becomes strict.

Proof: By post-multiplying (2.21) by z we obtain
Bz = (A + exyT)z = (p(A) + eyT:c) T

which means that p(A) + eyTz is an eigenvalue of B. Since eyTz > 0 we take the inequality
(2.22). The analogous proof for the strict case is obvious and is omitted. O

It is obvious that an analogous property could be given by considering that A7 possesses
the Perron-Frobenius property. However, we have to remark that the above property does
not guarantee the existence of the Perron-Frobenius property for the matrix B. To do this
we give the following statement.

Theorem 2.9 Let A € R™" be such that both A and AT possess the strong Perron-Frobenius
property with z and y being the associated eigenvectors, respectively. Then, for the matriz
B such that

B=A+exy", €>0, (2.23)

there holds that both B and BT possess the strong Perron-Frobenius property and
p(4) < p(B). (2.24)

Proof: The proof of the strict inequality (2.24) is obtained from Theorem 2.8 and from
the fact that z,4 > 0. To prove the existence of the strong Perron-Frobenius property of
B and BT we use Theorem 2.2. We form B* = (A + ezy?)* and expand it into a sum of
products of the matrices A and zy” with the first term being 4*. Since Azy” = p(A)zy?
and 2y A = p(A)zy”, all the other 2 — 1 terms in the expansion, except A*, are eventually
positive scalar multiples of powers of the matrix zy”. This means that the sum of all the
other terms, except the first one, is a positive matrix. From Theorem 2.2 we have that
there exists a kq such that A* > 0 for all £ > ky. So, for this ky we have also B¥ > 0 for
all k£ > ko, which means that both B and BT possess the strong Perron-Frobenius property. O

We have to remark here that Theorem 2.8 gives a weak result for a dense set of directions
zy”, for all y > 0, while Theorem 2.9 gives a stronger result for precisely one direction zy?.
Based on continuity properties we can conclude that the last result is valid also for a cone
of directions around zyT.
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3  Convergence theory of Perron-Frobenius splittings

In this section we define first the Perron-Frobenius splittings analogous to Regular, Weak
Regular and Nonnegative splittings.

Definition 3.1 Let A € R™ be a nonsigular matriz. The splitting A= M — N is

(i) a Perron-Frobenius splitting of the first kind (kind I) if M~'N possesses the Perron-
Frobenius property.

(1) a Perron-Frobenius splitting of the second kind (kind II) if NM ™! possesses the Perron-
Frobenius property.

In the sequel, for simplicity, by the term Perron-Frobenius splitting we mean Perron-
Frobenius splitting of kind L. It is obvious from the above definition that the classes of
Regular splittings, Weak Regular splittings and Nonnegative splittings belong to the class
of Perron-Frobenius splittings. So, the class of Perron-Frobenius splittings is an extension of
the well known, previously defined, classes. In the following, we state and prove convergence
and comparison statements about this new class of splittings.

3.1 Convergence Theorems

The following theorem is an extension of the one given by Climent and Perea [4].

Theorem 3.1 Let A € IR™™ be a nonsigular matriz and the splitting A = M — N be a
Perron-Frobenius splitting, with = the Perron-Frobenius eigenvector. Then the following
properties are equivalent:

(1) p(M~IN) < 1

(it) AN possesses the Perron-Frobenius property

(iti) p(M-IN) = 2400

(iv) A='Mz >z

(v) A-ANz > M~1Nz.

Proof: It can be readily found out that the matrices A=* N and M !N are connected via
the relations yielded below.

A'N=M-N)'N=(I-MN)'MIN (3.25)

or
M7N=(A+N)'N=(I+A"'N)"1A7IN. (3.26)

The above relations imply that the matrices A™'N and M~!N have the same sets of eigen-
vectors with their eigenvalues being connected by

i=1,2,---,n, (3.27)

where A;, u;, 1 =1,2,---,n, are the eigenvalues of M~1N and A~1N, respectively.
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(i) = (i0): From p(M~'N) < 1 and (3.27), there is an eigenvalue y = 232V > 0 of
A~IN corresponding to the eigenvector z. Looking for a contradiction, assume that there is

another eigenvalue ' = % corresponding to p(A~1N). So,

70\ N
TN~ T-p(i—N)  H

The eigenvalue A" belongs to the disc |z| < p(M~'N) and 1 — p(M~1N) is the distance of
the point 1 from this disc. So, |1 — X| > 1 — p(M~!N) which constitutes a contradiction.

(ii) = (iii): Since A~'V has the Perron-Frobenius eigenpair (p(A~IN), z), property (iii)
follows from (3.26) by a post-multiplication by z.

(iii) = (i): It holds because p(A~1N) > 0.

(i) <= (iv): It is obvious that

p(ATIN) = |¢| =

1

-1 — — -1 p— — =1 ~1 = — 7.

A" Mz =M -N)"*Mz=(I-M'N)z l—p(M—lN)x
Since £ > 0, z # 0,

1 = -1
_— 1 > - N l1<=0<p(M™N) < 1.
1_p(M_1N)x_:c4z}0<1 p(M~™'N) < p( )

(i) <= (v): Considering relation (3.25) and the fact that z > 0, z 0, we get,
=
"INz > M1 _AMN) > p(M™'N)z <= p(M™IN) < 1.
ANz > M N:r:<—~——>1_p(M_1N)a:__p( Jz o( )

O

We can also state an analogous Theorem for the convergence properties of the Perron-
Frobenius splittings of kind II. The proof follows the same lines as before and is omitted.

Theorem 3.2 Let A € R™ be a nonsigular matriz and the splitting A = M — N be a
Perron-Frobenius splitting of kind II, with x the Perron-Frobenius eigenvector. Then the
following properties are equivalent: '

(i) p(M-1N) = p(NM-) < 1

(i) NA™! possesses the Perron-Frobenius property

(i#)) p(MIN) = 100

(iv) MA™'z >z

(v) NA~lz > NM~z.

Theorems 3.1 and 3.2 give sufficient and necessary conditions for a Perron-Frobenius
splitting to be convergent. The following two theorems give only sufficient convergence
conditions and constitute also extensions of the ones given by Climent and Perea [4].

Theorem 3.3 Let A € R™" be a nonsigular matriz and the splitting A = M — N is a
Perron-Frobenius splitting, with = the Perron-Frobenius eigenvector. If one of the following
properties holds true:

(i) There exists y € IR™ such that ATy >0, NTy > 0 and yTAz > 0

(i1) There exists y € R™ such that ATy >0, MTy > 0 and yTAz > 0

then p(M~IN) < 1.
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Proof: We consider the vector z such that y = (AT)~!z, then the above properties are
modified as follows:

(i) There exists z > 0 such that 27 (A"1N) > 0, 27z > 0, and
(ii) There exists z > 0 such that 27 (A7 M) > 0, 27z > 0,
respectively. We suppose that property (i) holds true. By post-multiplying by z we get

2ZX(A7IN)z = p2Tz > 0,

where 4 is the eigenvalue of A~!N corresponding to the eigenvector z. So, u = l—f(p{M—],;—an%.
Since 27z > 0 we get that u > 0, which means that p(M~N) < 1.
Let that property (ii) holds true, then by following the same steps we get
XA M)z = /2"z >0
where p' = T_—F}Wlflm > 0 which leads to the same result. |

Moreover, we can prove that property (ii) is stronger than property (i), which means that
the validity of (i) implies the validity of (ii) but the converse is not true. For this let that
property (i) holds. Then

ATy >0= MTy - NTy>0= MTy > Ny >0.

1t is obvious that the converse cannot hold.
For the Perron-Frobenius splittings of kind II, the following theorem is stated.

Theorem 3.4 Let A € R™" be a nonsigular matriz and the splitting AT = MT — N7 is a
Perron-Frobenius splitting of kind II, with x the Perron-Frobenius eigenvector. If one of the
following properties holds true:

(i) There ezists y € IR™ such that Ay > 0, Ny > 0 and y* ATz > 0

(ii) There erists y € IR™ such that Ay > 0, My > 0 and yTATz >0

then p(M~IN) < 1.

We have to remark here that because of the sufficient conditions only, in Theorems 3.3
and 3.4, we cannot have any information about the convergence unless such a y vector exists.
We show this by the following three examples.

Example 3.1

(z’)Az(; Zﬁ),N=(i3 3)’M=(:3£ §)=T=(—1 §)

e[ -3 1 e 21 B _ ( 0.5054
ATN = ( 05 -1 ) AM={ _g5 ¢ ) AT =44142 3= (0509 |
where T = M~!N. A vector z > 0 (z # 0) such that either 27 (A7!N) > 0 or 2T (A™*M) > 0

does not exist and so the splitting is not convergent.

’ -1 0 0 -2 0.9375 —0.125
(“)A:(?, —4)’N:( 5—1)’M_(8 —5)’T"( 0.5 o)’
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v (7T -1\ 4., (8 -1 0.8658
4 N‘(4 -0.5)"4 M‘(4 0.5) AR) = 08653, (05003
There exists no z > 0 (z # 0) such that z7(A"1N) > 0 but for 27 = (1 3) we have
zT(A71M) > 0, so the splitting is convergent.

QR =1 0 0 —2 1.0625 —0.3750
("”)A‘(3 —4)=N=( 5—3)’M_(8—7)’T_( 0.5 0)’

(T -3\ L., (8 -3 0.8590
A N“(4 —1.5)"4 M‘(4 —0.5) p(T) = 08390, 2 (05119

There exists no z > 0 (z # 0) such that either 27(A"1N) > 0 or 2T(A"1M) > 0 but the
splitting is convergent.

We have also to remark that the strict condition y” Az > 0 is necessary. This is shown
in the following example.

Example 3.2

1 w2 =i =9 & 1 -1 10 12
A=| 38 -4 1|, N=| -7 71|, M=| -4 32|, 7=]| -1 5
- I 4 25 —2 1 1.5 -1 2 00

-3 1 -25 0.5054
ATIN=| =05 -1 =2 |, p(T)=4.4142, z=| 0.8629 |.
0 0 05 0

For the vector 22 = (0 0 1) all but one of the conditions of Theorem 3.3 (1) hold. However, since
2Tz =0 the splitting is not convergent.

From Theorems 3.3 and 3.4 the corollaries below follow.

Corollary 3.1 Let A € R™" be a nonsigular matriz and the splitting A = M — N be a
Perron- Frobemus splzttmg, with z the Perron-Frobenius eigenvector. If one of the matrices
(ATIN)T or (A7IM)T possesses also the Perron-Frobenius property with y the associated
Perron—Frobemus eigenvector, such that yTz > 0, then p(M~'N) < 1.

Proof: Since y > 0 and y7(47IN) > 0 or y7(A"1M) > 0, respectively, the vector y plays
the role of z in the proof of Theorem 3.3, so the splitting is convergent. a

Corollary 3.2 Let A € R™ be a nonsigular matriz and the splitting AT = MT — N7 be a
Perron-Frobenius splitting, with z the Perron-Frobenius eigenvector. If one of the matrices
NA~! or MA™? possesses also the Perron-Frobenius property with y the associated Perron-
Frobenius eigenvector, such that yTz > 0, then p(M~IN) < 1.
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3.2 Comparison Theorems

The following theorem is an extension of the one given by Marek and Szyld (8] for nonnegative
splittings.

Theorem 3.5 Let A € IR™ be a nonsingular matriz such that A= > 0. If one of the
following properties holds true:

(i) A= M; — N, and AT = M — NI are two convergent Perron-Frobenius splittings of kind
I and of kind II, respectively, with Ty := M{'Ny, TT = (M;'Ny)T and z > 0, y > 0 the
associated Perron-Frobenius eigenvectors, respectively, and

Noz > Niz, (3.28)

(i) AT = MT — NT and A = M, — N, are two convergent Perron-Frobenius splittings of
kind II and of kind I, respectively, with TY := (M7'N,)T, Ty := M;'N, andy/ >0, 2> 0
the associated Perron-Frobenius eigenvectors, respectively, and

NQZ 2 le, (329)
then
p(T1) < p(T3). (3-30)
Moreover, if A™' > 0 and Nox # Niz, Naz # Ny 2z, respectively, then
p(T1) < p(T3). (3.31)

Proof: Let that property (i) holds. Then
A7 INoz > AN, z.

Since the above splittings are convergent, from Theorem 3.1 property (ii), we get that the
matrix A~'V; possesses the Perron-Frobenius property and from Theorem 3.2 property (i),
we get that the matrix (A~1N,)T possesses the Perron-Frobenius property, with = and y the
Perron-Frobenius eigenvectors, respectively. So,

A7 Noz — p(A™INy)z > 0

and by Theorem 2.6 we get that p(A~'N,) > p(A~'N;). Since p(A7IN;) = -l-f—%,ll—),

p((ATINL)T) = p(A7IN,) = 1—% and the fact that the function ;2 is an increasing

function of p € (0,1), the result (3.30) follows. The strict inequality (3.31) becomes obvious
from the fact that A™! > 0 and Noz # Nz, Noz # Nyz, respectively. The proof in case
property (ii) holds is analogous, where use of Theorem 2.7 is made this time. O

We show the validity of this theorem by the following example.
Example 3.3 We consider the splittings A = M; — N; = My — Ny = M3 — N3 where

4 -1 -1 -1 4 -1 0 0
-1 4 -1 -1 ~1 4 -2 0
A= 1 1 4 1| M= 0 -2 4 -1 |°

g, =1 =1 4 0 0 -1 4
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4 -11 02 0 4 -1 0 0

| =11 4 -1 0 -1 4 o0 o
M, = 02 -1 4 -1 | Ms= @ 0 4 —
0 0 -1 4 0 0 -1 4

The splitting A = M; — N; is a Perron-Frobenius splitting with the Perron-Frobenius
eigenpair being (p(T1), z1) = (0.5345, (0.5680 0.4212 0.4212 0.5680)T ). The splitting
AT = MT — NY is a Perron-Frobenius splitting of kind IT with the Perron-Frobenius eigen-
pair being (p(T3), ;) = (0.6126, (0.6388 0.2855 0.3871 0.6005)T ) - Although N, — N, is
not a nonnegative matrix, we have (N, — Np)z; = (0.0421 0.3644 0.5348 0)T > 0. More-
over, At > 0 and Npz; # Nyz1. So, property (i) of Theorem 3.5 holds and the inequality
p(Th) < p(T3) is confirmed. We can check that for the first two splittings, property (ii) of
Theorem 3.5 also holds.

To compare the last two splittings we observe that the splitting A = M, — N, is a Perron-
Frobenius splitting while A = M — N; is a regular splitting, but properties (i) and (ii) of
Theorem 3.5 do not hold. So, Theorem 3.5 does not give any information.

We have to observe here that both properties (i) and (i) of Theorem 3.5 hold for the com-
parison of the first splitting with the last one, since N3 — N; > 0. So, p(T1) = 0.5345 <
o(T3) = 0.6667 is confirmed.

The above theorem can be extended further by replacing condition A=! > 0 by a weaker
one. So, we can have the following statement.

Theorem 3.6 Let A € R™ be a nonsingular matriz. If one of the following properties
holds true:

(i) A= My~ Ny and AT = MF — N are two convergent Perron-Frobenius splittings of kind
I and of kind II, respectively, with Ty := M{'Ny, TY := (M;7'No)T and z > 0, y > 0 the
associated Perron-Frobenius eigenvectors, respectively, such that

yTA1>0, yTz>0 and Noz > Nz, (3.32)

(ii) AT = MT — NT and A = My, — N, are two convergent Perron-Frobenius splittings of
kind II and of kind I, respectively, with TT := (M7 *Ny)T, Ty := My Ny and o' >0, z > 0
the associated Perron-Frobenius eigenvectors, respectively, such that

yTA1>0, vT2>0 and Nz > Nz, (3.33)

then
p(T1) < p(T2). (3.34)

Moreover, if yTA™! > 0 and Nyz # Nz for property (i) or yTA™! > 0 and Noz # Nyz for
property (ii) , then
p(T1) < p(T3). (3.35)

Proof: Let that property (i) holds. Then from the first and the last inequalities of (3.32)
we get
yTA Nz > yT AN, 2.
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As in Theorem 3.5, it can be implied in a similar way that both matrices A—1N; and (A7I1N,)T
possess the Perron-Frobenius property, with z and y the Perron-Frobenius eigenvectors,
respectively. So,

p(ATIN2)y"z — p(A™ Ny )y"z > 0

and therefore p(71) < p(T3). The strict inequality (3.35) is obvious. The proof in case
property (ii) holds is similar. U

Theorem 3.7 Let A € IR™" be a nonsingular matriz. If one of the following properties
holds true:

(i) A= M; — Ny and AT = MT — N be two Perron-Frobenius convergent splittings of kind
I and of kind II, respectively, with Ty := M{'Ny, Tf = (My*Ny)T and z > 0, y > 0 the
associated Perron-Frobenius eigenvectors, respectively,

Niz >0 and M7 > M; P, (3.36)

(i) AT = MT — NI and A = M, — N, be two Perron-Frobenius convergent splittings of kind
II and of kind I, respectively, with TZ = (M7*N\)T, Tp := M;IN, and y' > 0, z > 0 the
associated Perron-Frobenius eigenvectors, respectively,

Noz >0 and M7' > MY, (3.37)
then
p(Th) < p(Ty). (3.38)
Moreover, if M{' > Mz and Nyx # 0, Naz # 0, respectively, then
p(T1) < p(T2). (3.39)

Proof: We assume that property (i) holds. Then
1

Mz =
. .O(Tl)

N]_.T)ZO

and

1 - p(Th)
— _ e PR S )
Az = Mi(I — Tz (T 1Z

By premultiplying by M7 — M5 > 0 we get
(M{' = MDAz = (I - Tz — (I — To)z = Toz — p(T1)z > 0.

By Theorem 2.6 we obtain the result (3.38). The strict inequality (3.39) is obvious and that
the proof in case property (ii) holds is quite analogous. O

We observe that Theorem 3.7 provides an answer to Example 3.3 where Theorem 3.5
failed. Especially, we have My ' — M5! > 0 and Nozo > 0, Naz, # 0. So the strict inequality
p(T2) = 0.6126 < p(T3) = 0.6667 is confirmed. It is easily checked that property (ii) of
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Theorem 3.7 also holds. We also observe that both properties (i) and (ii) of Theorem 3.7
hold for the comparison of the first with the second splitting as well as the first with the last
one.

As we provided an extension from Theorem 3.5 to Theorem 3.6 we can extend also
Theorem 3.7 by simply replacing the condition M;* > M3 by a weaker one. This is stated
in the following theorem, where the proof is similar to the previous omne.

Theorem 3.8 Let A € R™" be a nonsingular matriz. If one of the following holds:
(i) A= M, — N; and AT = MT - NI are two convergent Perron-Frobenius splittings of
kind I and of kind II, respectively, with T, := M{ Ny, TF := (M7 'Ny)T and z > 0, y > 0
the associated Perron-Frobenius eigenvectors, respectively, Nyz > 0 and VM >yt M
vz >0,
(i) AT = MT — NT and A = My — N, are two convergent Perron-Frobenius splittings of
kind II and of kind I, respectively, with TT := (M7*N,)T, Ty := My Ny and v’ > 0, z > 0
the associated Perron-Frobenius etgenvectors, respectively, Noz > 0 and yT M7 > T M !,
yTx > 0, then

p(T1) < p(T3). (3.40)
Moreover, if yTM{' > y"M; ' and Niz # 0 or yTM{' > yT M5! and Noz # 0, respec-
tively, then the inequality (8.40) is strict, while if yTM;' = yTM;" or yENM, S = g
respectively, then the inequality (3.40) becomes an equality.

In the following example it is shown how the three previous theorems work.

Example 3.4 We consider the splittings A= My — Ny = Mo—No = My — N3 = My;— N, =
Mg — N5 where

3 -1 -1 300 g =1 0
A= -1 3 -1 3 M1= 030 y M2= -1 3 0 3
1 =1 .3 0 03 0 0 3

300 d -1 —1 3 0 -1
M3 = -1 3 0 3 M4 e 0 3 0 3 M5 = 0 3 0 .
103 0 0 3 10 3

It is easily checked that all the above splittings are convergent ones with

p(T3) =0 < p(Ty) = p(T3) = p(Ty) = % < p(Ts) = 0.4472.

The first four splittings are Perron-Frobenius splittings while the last one is a nonnegative
splitting. The splittings AT = MT — NI = MT — Nf = MT — N7 are also Perron-Frobenius
splittings while the splitting AT = MZ — N7 is a nonnegative splitting. The associated
Perron-Frobenius eigenvectors are:

0.7071 0.8018 0.4082 0.6325
Ti=z,= | 07071 |, z3= | 05345 |, z4= | 0.8165 |, zs= | 0.7071 |,

0 0.2773 0.4082 0.3162
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0 05130
n=ys=ys= | 07071 |, ys= | 0.6882 |,
0.7071 0.5130

where by z; and y; we have denoted the associated Perron-Frobenius eigenvectors of kind I
and of kind II, respectively. It is easily checked that A~! is not a nonnegative matrix so,
Theorem 3.5 cannot be applied and therefore we will try to confirm our results by applying
Theorems 3.6, 3.7 or 3.8. We use the symbol i <+ j to denote the comparison of the i*"
splitting with the 7% one:

1 <+ 2 : It is easily checked that assumptions (¢) of Theorems 3.6, 3.7 and 3.8 hold, where
the roles of 77 and T3 have been interchanged, to obtain p(73) < p(73). Note that the strict
inequality cannot be obtained from any of the above theorems.

1 <» 3 : Theorems 3.6 and 3.7 cannot by applied while both assumptions (¢) and (i) of
Theorem 3.8 hold with the corresponding inequalities y¥ M7 ! > yI M;' and y? M7* >
y{ M3 " being equalities. So, we obtain p(T}) = p(T3).

3 «<» 2 : The same properties, as in the case 1 ++ 2, hold. Therefore, p(T5) < p(T3).

3 «+ 4 : The same properties, as in the case 1 <+ 3, hold. So, p(T3) = p(Ty).

4 <+ 2 : The same properties, as in the case 1 +» 2, hold. Consequently, p(T3) < p(T}).

4 <+ 5 : Both properties of Theorems 3.6, 3.7 and 3.8 are applied to give the inequality
p(Ty) < p(Ts). Moreover, we have that y¥ A=! > 0 and yf M7 > yTM;', which gives by
Theorems 3.6 and 3.8, respectively, the strict inequality p(Ts) < p(T5).

5 <+ 2 : From property (i) of Theorem 3.6 and the fact that yZ A=! > 0 we obtain the strict
inequality p(T3) < p(T5).

We conclude this work by pointing out that the most general extensions and generaliza-
tions of the Perron-Frobenius theory for nonnegative matrices, have been introduced, stated
and proved. Our theory can be applied for the solution of linear systems derived from the
discretisation of elliptic and parabolic partial differential equations, from integral equations,
from Markov chains and from other applications. The introduced Perron-Frobenius split-
tings can also be used in connection with the multisplitting techniques in order to solve
linear systems of the aforementioned applications on computers of parallel architecture.
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Abstract

An interesting topic in mathematical statistics is that of the construction of the
confidence intervals. Two kinds of intervals which are both based on the method of
the pivotal quantity are a) the Shortest Confidence Interval (SCI) and b) the Equal
Tails Confidence Intervals (ETCI). The aim of this paper is i) to clarify and comment
on the finding of such intervals, ii) to investigate the relation between the two kinds of
intervals, iii) to point out that the existence of confidence intervals with the shortest
length do not always exist, even when the distribution of the pivotal quantity is
symmetric and finally iv) to give similar results when the Bayes approached is used.
We believe that all these will contribute to in classroom presentation of the topic to
the graduate and postgraduate students.
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1. INTRODUCTION

Let X be a real value random variable (r.v) from the density f(x;0) and consider the
parameter 0 as a fixed unknown quantity. If we seek an interval for 6, then it is well
known that the standard method for obtaining confidence intervals for 0 is the pivotal
quantity method. (cf. Huzurbazar (1955), Guenther (1969, 1987), Dahiya and
Guttman (1982), Ferentinos (1987, 1988, 1990), Juola (1993), Ferentinos and
Kourouklis (1990), Kirmani (1990), Casella and Berger (2002), Rohatgi and Saleh
(2001) e.t.c).

Let Q(Xi, Xa, - - ., Xp;0) be a pivotal quantity where X;, X, . . ., X, is a random
(r.s) from the distribution of f(x;0). The probability statement

P(g,<Q<q,)=1-a (1.1)
is converted (when possible) to
P(q; <6<q;)=1-a. (1.2)
If constants q;, q, in (1.1)can be found so that (q} —q])is minimum, then the interval
(93, ;) is said to be the shortest confidence interval based on Q. Frequently (q, —q;)
can be expressed as
I=q; -q; = w(x)9(q,,0,), (1.3)
where the function w does not involve q,, q, and ¢ is independent of x. In such
situations minimizing q; -q; is the same as minimizing E(q} —q;). On the other hand
if constants q,, g, can be determined so that
P(Q<q,)=a/2 and P(Q>q,)=0q/2 (1.4)

then the interval (q;, g;) is said to be an equal tails confidence interval.

In both situations we have the same confidence interval, symbolically Cl(q:,q;) , which
is based on the same pivotal quantity Q. What it is different is the determination of the
q, and q, (cf. previous references).

The aim of this work is to clarify and comment on problems that emerge at the
process of finding, to investigate the relation of equality of length of these, to point
out the non existence of SCI even when the distribution of the pivotal quantity is
symmetric and finally to give similar results based on the Bayes approach.

2. MAIN RESULTS
2.1 The case where the SCI coincide with the ETCI

As it was pointed out earlier the SCI and the ETCI differ only as for the
determination of q;, q,. An interesting question that springs up is when this
determination is identical, i.c when those intervals have the same length. And
reversely, if the two intervals have the same length does it characterize the
distribution of the pivotal quantity? An answer to the last question is given, partially,
by the work of Kirmani (1990). In this work it is shown when the ETCI minimize the
length based on the pivotal quantity Q. More specifically it shown that “... an ETCI
obtained from a symmetrically distributed pivotal quantity does not necessary have
minimum length unless the distribution function of the pivotal quantity is concave on
the right of the point of symmetry”. Also (partly) answer in this question gives the
theorem 9.3.2 in combination with exercise 9.39 in the book of Casella and Berger
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(2002). More concretely if the distribution f(q) of the pivotal quantity Q is unimodal,
then the interval [q,, q,] that satisfies the relationships

() [ f(@)da=1-c, (i) f(q)=f(a,)>0 and (i) g, <q" <q,, @1

where q¥ is the median of f{(q), is the shortest among all intervals that satisfy (i).
Exercise 9.39 says that if f(q) is symmetric and unimodal then for confidence intervals
of the form [q,, g,] the requirements of theorem 9.3.2 are satisfied and also q;, q, are
such that this to be also an ETCL

The two approaches can be shown to be equivalent if as a point of symmetry we
will take the zero point. The precedents give the spark for an overall confrontation of
this subject (generalisation and fulfilment) and if the reverse is also true. So we come
up with the following proposition.

Proposition 2.1 Let Q=Q(x; 6) be a pivotal quantity with p.d.f. f(q). Let also lgcy and
Iercr be the lengths of a SCI and ETCI, respectively, for 0 based on Q. Then, if f(q) is
symmetric and unimodal, lsci=Lertcy, provided that the length 1 is of the form I=c(q,-

q,), 0.
Proof-
We define the sequences of points q; x and g, such that
f: f(q)dq = a/k and J:‘ f(q)dq = (k - er/k, k>1. (2.2)
Obviously P(q,, <Q<aq,,)=1-a. Also Fo(q, ,)7o/k and Fo(q, )=1-(k-1)a/k. Hence
Qi = &1(0'./k) and Qy, =F3'(1-(k-Na/k). (2.3)

Since f(q) is symmetric and unimodal, minimizing the length 1 of the interval [9)
9,1, we get f(q, w14, ,)- From this relationship we can determine the values of qx
and g, ,. Without loss of generality we can assume that Q) = Gy Now using (2.3)
we get that —F3'(a/k) = F3'(1- (k- 1)oe/k) which implies that

Fo (Fa'(a/k)) = 1= (k - /K, (2.4)
or because of the symmetry of f(q) (see Kirmani 1990)
Fa [Fa'(a/k)] = 1-Fy [Fa'(a/k) ] = 1-a/k . @2.5)

From the last two relations we get that 1-a/k=1 -(k-1)a/k and hence k=2. This
completes the proof of the proposition 2.1.

Remarks: (i) We can get a proof of the previous proposition if we combine theorem
9.3.2 and exercise 9.39 of Casella and Berger (2002) or from the theorem of Kirmani
(1990). However we believe that the previous proof she is different, sort and at
straight line proof.

(i) Proposition 2.1 has been proved for confidence intervals whose length is of the
form l=c(q,-q;). However the problem remains unsolved for confidence intervals
whose length is of the form l=c(1/q,-1/g,). It is the author’s guess that if the
distribution f(q) is symmetric and unimodal then the only form of the length of the
confidence interval is the first one.

(iii) Interest presents the reverse of the proposition 2.1 (because it can constitutes a
characterization of f(q)). That is, if lIsc=lgrc; then f(q) is symmetric and unimodal. It
is guessed that this may be the case for distributions like normal and t. Although a
rigorous proof of it, it is not known (so it remains an opened problem), the following
argument supports this idea. "In the case of the SCI the q ; and q, are one a function of
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the other, i.e q,=q,(q,) (see relation (1.3)). This is because the length I must be the
shortest one. On the other hand this is not the case for a ETCI In this case each of the
q, and q, is determined independently of each other (see relations (1.4)). When we say
that the two kinds of intervals coincide (i.e lsci=lgrc) we mean that they are
determined by the same q's. That is if q; and q, (q; <q), are the points which
determine the ETCI then o, =q, and q; =q, and hence o; =0, (q;). This implies that
in the case of ETCI the q's are function of each other and their relation is linear, since
the length of the interval is of the form I=c(q,-q,). In order this to happen the
distribution f{q) must be symmetric and unimodal, i.e. g,=q,+c".

(iv) It is known that the SCI based on the pivotal quantity Q it is shortest for the
specific pivotal. This means that we can find another pivotal quantity Q* which will
give even a shortest interval than that based on Q. (cf. Ferentinos 1988). The question
which naturally arises is how to find the pivotal quantity that gives the overall SCL
The literature does not give a clear answer on this point. Intuitively, a reasonable
choice is the pivotal quantity to be a function of a sufficient statistic (only),
(Guenther, 1969). Moreover, using theorem 9.3.2 of Casella and Berger (2002) we get
that the CI [q,, q,] is the shortest among all intervals that satisfy (1.1). Now from
exercise 9.39 of the same authors, if f(q) is symmetric and unimodal then the
previous relation it is satisfied. Thus we can state the following proposition:

Propesition 2.2 The SCI based on pivotal quantities with p.d.f. symmetric and
unimodal is the overall shortest confidence interval.

2.2 Monotonicity of f(q) and 1(q)

To find a SCI one can use the Lemma 2.1 in Ferentinos and Kourouklis (1990) or
equivalently the theorem in Juola (1993). Usually, in most of the cases, one follows
the classical minimization process under constraints. This means that one wants to
minimize relation (1.3) subject to condition (1.2). The most frequently cases are those
where the function ¢(q,, q,) is of the form (q,-q,) or (1/q,-1/q,). In those cases the
minimization problem leads, respectively, to the following relations

(i) f(a,) = (q,) and i) G7f(q,) = Gf(q,), (2.6)
or we decide based on the monotonicity of the f(q).

If f(q) is symmetric and unimodal then (w. 1. 0 g. we can assume that —q,=q,) the
quantities q; and g, are determined from the relation (2.6) (i). However if f(q) is
monotonic then it is almost impossible to use relations (2.6). In those cases the
minimization problem it is based on the monotonicity of the length 1. From this
process results the following interest proposition (characterization) for the length 1,
which depends on the monotonicity of f(q) and facilitates the determination of q, and
g, guiding us to the right direction with respect to the differentiation of q, or q, (see
comment on example 2.2).

Proposition 2.3 Let Q=Q(x;0) be a pivotal quantity for a parameter 8 with p.d.f. f(q).
For the 100(1-a)%CI for 6 based on Q of the form P(q,<Q<q,)=1-0 with length
Li=w1(x)(q,-q,) or L=wx(x)(1/q,-1/q,) we have:

(1) if f(q) is a strictly increasing p.d.f. on [ki, k2], kieR, (i=1, 2) then Ii(q) is strictly
decreasing on [k;, k).
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(i) ) if f(q) is a strictly decreasing p.d.f. on [k, ko], kieR, (i=1, 2) then 1;(q) is
strictly increasing on [k, ks].

Proof.

(1) It is easy to see that the minimum of 1;(q) subject to (1.1) occurs for those
values of q, and g, which satisfy the relation

E%z . w,(x)(1_%J. @.7)
The fact that f(q) is strictly increasing implies that f(q,)#f(q,). More ever if q,<q, then
f(q,)<f(q,). Thus from (2.7) and given that w;(x)>0 we get that dl;/dq,<0. This means
that 1;(q) is strictly increasing on some interval [k;, k;]. Hence the q, and q,, for a
SCI, are determined by the relations

% =k, and ["f(a)dq=1-o. 2.8)

For the case L,=wa(x)(1/q,-1/q,) we have

d, _ % f(9,) - Bf(g,)

do, - gy
Now since wa(x)>0, q,<q, and f(q,)<f(q,) we obtain that dl,/dq,<0. Thus 1, is strictly
decreasing on some interval [k;, ko]. The q, and g, can be determined from the

relations (2.8).
(i) Working in a way similar to that in (i) we can show that in the case of 1; the
quantities q, and g, are determined from the relations

%=k and [“f(q)dq=1-a.
In the case of I, we can not say anything about the sign of dl,/dq;. The quantities q
and q, are determined from the relation q:f(q,) = g3f(q,) .

Remark: From (i) of the previous proposition we have that when f(q) is strictly
increasing then both 1; and 1, are strictly decreasing. This means that the SCI (if it
exists) take place on the upper point of the interval where Q is defined, that is the
point k,. Hence the derivation of 1(q) should be with respect the q,. In the opposite

case the derivation should be with respect the q;- Another way for expressing the
same thing is to set q,=q and q,=8(q) (q<5(q)).

We will clarify the previous proposition with the following examples.

Example 2.1 (Ferentinos 1990) Let X;, X,,..., X, be a random sample from a
distribution with density f(x,0)=g(x)/h(8), a(8)<x<b(8). If 8 is a sufficient statistic for
6, then it is known that the quantity Q=h($ )/h(8) is a pivotal quantity with distribution
(Huzurbazar 1955) f(q)=nq™", 0<q<1. Obviously f(q) is strictly increasing on [0, 1]
for n>1. The CI based on Q can be found from the relation P(q,<Q,q,)=1-0, from
which we get that l=h(é)(1/q]-1/q2). So, from proposition 2.2, the length of the
interval 11s strictly decreasing and hence the SCI is obtained on the points g,=1 and q,

given from the relation _Ef(q)dq =1-a. Finally the SCI for h(6) we get is the well
known one h(8 )<h(0) <h(8)a
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Example 2.2 (Guenther 1969) Let X;, Xa,..., X, be a random sample from the
distribution f(x, 8)=e™*?, x>0. If T=minX; (i=1, 2, ..., n) is the sufficient statistic for
the parameter 6 then Q=2n(T-0) is a pivotal quantity with p.d.f f(q)=(1/2)e >, q=0. It
is clear that f{(q) is strictly decreasing on [0, «] and hence, according to proposition
2.2 (ii), I(q) is strictly increasing on [0, «]. Thus the SCI will be given from the points
q, and g,, where q,=0 and g, is determined from the relation J:‘ f(q)dg =1-« . Finally

the SCI is the (T+lno/n, T).

Note that if we differentiate with respect the q,, then the length is still a strictly
increasing function, but we can not get q,=0 since q&[0, ] and q;<q,. Thus we have
to differentiate with respect to q,.

2.3 The case where a SCI does not always exist

The SCI does not always exist even when the distribution of the pivotal quantity
f(q) is symmetric. At this point it is worth to comment and make widely known two
examples given by Kirmani (1990).

Example 2.3 Let X have the density f(x, 0)=[x-0|, 6-1<x<@+1, -c0<0<+c0, The quantity
Q=X-0 has the symmetric distribution f(q)=|q| -1<q<1 and is a pivotal one. To find a
SCI or a ETCI we use the relation (1.1). At the moment will discuss the case where
-1<q,<0<q,<1. The cases 0<q;<q,<I and -1<q,<q,<0 give us CIs whose level of
significance is less than 50% since in both cases %<a<1.So for the case -1<q,<0<q,<1
we have: P(x-q,<0<x-q;)=1-a and the interval for 6 has length 1=q,-q,. Minimizing
this length subject to (1.1) gives f(q,)=f(q,) and hence —q,=q,. From that we get that
il

dCIf q,=-q,
means that a SCI does not exist in this case. On the contrary an ETCI exists and has
the form [x-(1-0)"?, x+(1-0)"?].

At this point we have to say that the proposition 2.1 can not be applied since the
density f(q) it is not unimodal.

If we want a SCI or an ETCI for theoretical reasons and not for practical use, we
can work out the case 0<q,<q,<l1. In this case f(q) is strictly increasing and making
use of proposition 2.3 we get that the SCI is of the form [x-1, x-(20-1)'”] whereas the
ETCI has the form [x-(1-0)'?, x+a'?].

<0 and hence 1(q) can not be minimized (actually is maximized) which

Example 2.4 Let X have density f(x,0)=(1/26)e™®, -co<x<+w, 6>0. The quantity
Q=X/8 is a pivotal quantity with density f(q)=.5¢™, -co<q<teo. As in the previous
example the most interesting case is the case where -00<q;<0<q,<+c0. The CI we get,
based on the previous pivotal quantity, has the form [max(x/q,, x/q,) , +=]. Obviously
its length 1 equals to infinity (I=co). This implies that there is no meaning to search for
a SCIL. On the contrary an ETCI can easily be obtained and has the form
[max(x/ine, x/Inat), +o].

Let’s now consider the quantity Q*=2|x|/6. It can be shown that it is a pivotal
quantity with p.d.f. fig*)=.5¢""%, q*>0. The CI based on this quantity takes the
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form(ﬂx—', %J Since f(q*) is decreasing the q; and q, will be determined from

9

the relation g?f(q,) = ¢3f(q,) (see proposition 2.3).

2.4 Bayes approach

Although some textbooks in Mathematical Statistics discuss Bayes confidence
intervals (BCI), the concept of a Bayes shortest confidence interval (BSCI) commands
little or no attention. The term is mentioned in Rohatgi and Saleh (2001), Casella and
Berger (2002), Beaumont (1980), Mood et all (1974) and Silvey (1975). However,
neither text offers any further discussion of the topic.

Let X be a r.v having a density f(x|0). Suppose that n(6) is a prior distribution of
and 7(0|x) is the posterior distribution corresponding to f(x|0) and n(6). Given n(8}x)
the 100(1-a)% BCI for 0 is defined by

P(q,<(8]x)<q,)=1-0. or f: w(6]X)d0 =1-c . 2.9)
Hence, in order to obtain a BSCI for 0, we need to choose q;> 9, such that the length
I=q,-q, (2.10)

is minimum under the condition (2.9). In the case where n(0|x) is symmetric and
unimodal then q, and g, can be determined from the relation (q,[X)=n(q,/x). In a
different case we have to exam the monotonicity of I(g). In the last case the
proposition 2.3 can be used without any restriction since the form of 1 is always of the
form (9,-9;)- In the Bayes approach 6 is a r.v. and in general the posterior probability
7(0[x) can be considered as a pivotal quantity, in the sense that it is a function of © and
x has some “known” distribution. After that we can state the following proposition.

Proposition 2.4 If 7(6[x) is the posterior p.d.f. of 0[x, then for the BCI of 0 of the form
(2.9) and length (2.10) we have that:

1) if m(6[x) is a strictly increasing p.d.f on [ki, ko], kieR (i=1, 2), then 1(q) is strictly
decreasing on [k, k;].

ii) if n(B[x) is a strictly decreasing p.d.f on [k1, k2], kieR (i=1, 2), then I(q) is
strictly increasing on [k;, ks].

Those results, as in the classical case, make easier the determination of q; and g,.

Remarks: (i) In the present case theorem 9.3.2 of Casella and Berger is valid without
any comment (like those made for the classical case) because the length 1 is always of
the form g,-q,. (See also Casella and Berger corollary 9.3.10).

(i) A BETCI can be defined from the relations

[ n@Ix)d6 =a/2 and [: (6] x)d6 = 0/2 .

In this case proposition 2.1 is always true , i. e. if n(0x) is symmetric and unimodal
then lpscr=lgercy. The comments made for a similar remark in the classical case are
still true.

(iii) Since the determination of q, and q, is based on the posterior p.d.f., m(6[x),
many authors (see e.g Bickel and Doksum (2001), Casella and Berger (2002)), in
order to distinguish between classical and Bayesian confidence sets, they use the term
credible sets for the second case.
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In many cases the BSCI for a parameter 0 has shorter length than the
corresponding SCI in the classical case. This it is maybe expected since in the
Bayesian approach we have more information about the parameter 6.

We demonstrate the previous discussion with the following examples.

Example 2.5 Let X, X;, . . ., X, be a random sample from the normal distribution
N(0, 1) and let the prior distribution of 6 be the N(0, 1). It is well known (see Mood et
all 1974, Bickel and Doksum 2001) that the posterior distribution of 6, (0|x), is the

N(nX/(n+1), #(n+1)). Since =(B]x) is symmetric and unimodal, by previous
discussion, the q, and q, will be found from the relation =n(q,x)=mn(qg,/x) or

(q1 —nX/(n+ 1))2 = (q2 —nX/(n+ 1))2 , which implies that gq,= 2n)—(/(n - .

Combining it with the relation P(6|x>q,)=w/2 we get that q, = 1.3 ——2z,,, and
n+1 JT
hence g, = % - —J;Tza 12- Thus we get the well known CI which is the shortest.

The BETCI are found using the usual relationships. Note that in this case the reverse
of proposition 2.1 is also true.

Example 2.6 Let X;, Xs, . . ., X, be a random sample from the uniform distribution
U(0, 0) and let the prior dlStI'lbu’[lon of 0 be the Pareto with density n(0) = kx’ /6",

X,<0<oo, where X, and k are known quantities. It can be shown that
k xt n+k
ﬂ(elx)=m—+('§).ékf1—")— K <0<,
where X, =max(X,.x,) and Xm=maxX;. Since m(0x) is strictly decreasing on

s s l(q) is strictly increasing on the same interval and hence q, =X, and

1
4, = X;,. ™ . Thus the BSCI for 8 is the( - (n)a‘m}

Example 2.7 Let X be a r.v with p.d.f. f(x, 8)=¢*?, -co<f<x<c, and let the prior
p- d.f. of ® be the n(0)=06e”, 60. Here n(0[x)=20/x> , 0<B<x. Now, n(0]x) is strictly
increasing on [0, x] which means that 1(q) is sl:nctly decreasmg on the same interval.
Thus the minimum of 1(q) occurs at g,=x and ql—xa , i.e the BSCI is the (xa'?, x).
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ON LINEAR VOLTERRA DIFFERENCE EQUATIONS WITH
INFINITE DELAY

CH. G. PHILOS AND I. K. PURNARAS

ABSTRACT. Linear neutral, and especially non-neutral, Volterra difference equa-
tions with infinite delay are considered and some new results on the behavior
of solutions are established. The results are obtained by the use of appropriate
positive roots of the corresponding characteristic equation.

1. PRELIMINARY NOTES

Motivated by the old but significant papers by Driver [3] and Driver, Sasser
and Slater [5], a number of relevant papers has recently appeared in the literature.
See Frasson and Verduyn Lunel [10], Graef and Qian [11], Kordonis, Niyianni and
Philos [16], Kordonis and Philos [18], Kordonis, Philos and Purnaras [21], Philos
[27], and Philos and Purnaras [28, 29, 33, 35, 36]. The results in [10, 11, 16, 27, 28,
29, 33, 35] concern the large time behavior of the solutions of several classes of linear
autonomous or periodic delay or neutral delay differential equations, while those
in [18, 21, 36] are dealing with the behavior of solutions of some linear (neutral
or non-neutral) integrodifferential equations with unbounded delay. Note that the
method used in [10] is based on resolvent computations and Dunford calculus, while
the technique applied in the rest of the papers mentioned above is very simple and
is essentially based on elementary calculus. We also notice that the article [10] is
very interesting as well as comprehensive.

Along with the work mentioned above for the continuous case, analogous inves-
tigations have recently been made for the behavior of the solutions of some classes
of linear autonomous or periodic delay or neutral delay difference equations, for the
behavior of the solutions of certain linear delay difference equations with continu-
ous variable as well as for the behavior of solutions of a linear Volterra difference
equation with infinite delay. See Kordonis and Philos [19], Kordonis, Philos and
Purnaras [20], and Philos and Purnaras [30, 31, 32, 34]. For some related results
we refer to the papers by De Bruijn [2], Driver, Ladas and Vlahos [4], Gyori [12],
Nortis [25], and Pituk [37, 38].

In [21], Kordonis, Philos and Purnaras obtained some results on the behavior of
solutions of linear neutral integrodifferential equations with unbounded delay; the
results in (21] extend and improve previous ones given by Kordonis and Philos [18]
for the special case of (non-neutral) integrodifferential equations with unbounded
delay. In [36], Philos and Purnaras continued the study in [18, 21] and established
some further results on the behavior of solutions of linear neutral integrodifferential

2000 Mathematics Subject Classification. 39A10, 39A11.
Key words and phrases. Volterra difference equation, neutral equation, infinite delay, asymp-
totic behavior, stability, behavior of solutions, characteristic equation.
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equations with unbounded delay, and, especially, of linear (non-neutral) integrod-
ifferential equations with unbounded delay.

Our purpose in this paper is to give the discrete analogues of the results in [18,
21, 36]. Here, we study the behavior of solutions of linear neutral Volterra differ-
ence equations with infinite delay, and, especially, of linear (non-neutral) Volterra
difference equations with infinite delay. Our results will be derived by the use of
appropriate positive roots of the corresponding characteristic equation. Some of the
results of the present paper extend and improve the main results of the authors’
previous paper [31].

Neutral, and especially non-neutral, Volterra difference equations with infinite
delay have been widely used as mathematical models in mathematical ecology,
particularly in population dynamics. Although the bibliography on Volterra inte-
grodifferential equations is quite extended, however there has not yet been anal-
ogously much work on the Volterra difference equations. We choose to refer here
to the papers by Jaro$ and Stavroulakis [13], Kiventidis [15], Kordonis and Philos
(17], Ladas, Philos and Sficas [22], and Philos [26] for some results concerning the
existence and/or the nonexistence of positive solutions of certain linear Volterra
difference equations. Also, for some results on the stability of Volterra difference
equations, we typically refer to the papers by Elaydi [6, 7], and Elaydi and Mu-
rakami [9] (see, also, the book [8, pp. 239—250]).

For the general background of difference equations, one can refer to the books by
Agarwal [1], Elaydi [8], Kelley and Peterson [14], Lakshmikantham and Trigiante
[23], Mickens [24], and Sharkovsky, Maistrenko and Romanenko [39).

The paper is organized as follows. Section 2 contains an introduction and some
notations. Section 3 is devoted to the statement of the main results (and to some
comments on them). The proofs of the main results will be given in Section 4.

2. INTRODUCTION AND NOTATIONS

Throughout the paper, N stands for the set of all nonnegative integers and Z
stands for the set of all integers. Also, the set of all nonpositive integers will be
denoted by Z~. Moreover, the forward difference operator A will be considered to
be defined as usual, i.e.

Asp =841 — 85, nEN

for any sequence (s, ),en of real numbers.
Consider the linear neutral Volterra difference equation with infinite delay

n—1 n—1
(E) A (x,,,+ > Gn_jxj) =atn+ Y Kn_j3;

j=—co
and, especially, the linear (non-neutral) Volterra difference equation with infinite
delay
n—1

(Eo) Az, = az, + Z Kn_jﬂfj,

J=—0c0
where a is a real number, and (Gr)nen—{0y and (Kn)nen—{0} are sequences of
real numbers. It will be supposed that (Kn)nen—{o0} s not eventually identically
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zero. Note that (Ep) is a special case of (E), i.e. the special case where the kernel
(Grn)nen—{o} is identically zero.
Equation (E) can equivalently be written as follows

oo oo
A (xn + Zijn_J‘) =azxr, + ZKjxn-j

=1 J=1

and, especially, (Ep) can equivalently be written as

[o o]
Az, = az, + Zszn_J’.
i=1
By a solution of the neutral Volterra difference equation (E) (respectively, of the
(non-neutral) Volterra difference equation (Eo)), we mean a sequence (Tn)necz of
real numbers which satisfies (E) (resp., (Eg)) for all n € N.
In the sequel, by S we will denote the (nonempty) set of all sequences ¢ =
(¢n)nez- of real numbers such that, for each n € N,

—i. co -1 o=}
o¢ = Z Gn_jp; = Z Gj¢n—; and o = Z Kn—i¢; = Z Kibn_j

j=—0 j=n+1 j=—co j=n+1

exist in R. In the special case of (Eo), the set S consists of all sequences ¢ =
(¢r)nez- of real numbers such that, for each n € N, ®X exists in R.

It is clear that, for any given initial sequence ¢ = (¢n)necz- in S, there exists
a unique solution (z,)necz of the difference equation (E) (resp., of (Ep)) which
satisfies the initial condition

(®)] T, =¢, forneZ;

this solution (2, )z is said to be the solution of the initial problem (E)—(C) (zesp.,
of the initial problem (Eg)—(C)) or, more briefly, the solution of (E)—(C) (resp., of
(Eo)—(C))-

With the neutral Volterra difference equation (E) we associate its characteristic
equation

(%) (A-1) (1 +§:A-J'Gj) =a+i,\--ff{j,
i=1

3=1

which is obtained by seeking solutions of (E) of the form z, = A" for n € Z,
where A is a positive real number. In particular, the characteristic equation of the
(non-neutral) Volterra difference equation (Eo) is

(*)o A—1=a+ZA'jKj.

J=1

The use of a positive root Ag of the characteristic equation (*) with the property

(P()) N (1 %
=1

i 1o ;.
1-1)3) Gl + 35 23731051 < 1
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plays a crucial role in obtaining the results of this paper. In the special case of the
(non-neutral) Volterra difference equation (Eqg), the property (P()o)) (of a positive
root Ag of the characteristic equation (x)g) takes the form

(Po(M)) L NTilI <1
j=1

In what follows, if Ag is a positive root of (*) (resp., of (*)o) with the prop-
erty (P(Xo)) (resp., with the property (Po()p))), we shall denote by S()\o) the
(nonempty) subset of S consisting of all sequences ¢ = (#n)nez- in S such that
(Ao nén)nez— is a bounded sequence.

Now, we introduce certain notations which will be used throughout the paper
without any further mention. We also give some facts concerning these notations
that we shall keep in mind in what follows.

Let Ao be a positive root of the characteristic equation (*) with the property
(P(Ao)). We define

= = =3 — _.....1_) '] E i - =4 A
(o) J.g;)\" [1 (1 SWL c:1+)\02f,_V::,\0 iK;
and
oo i 1 ; 1 oo o
woa) =357 1+ - )65+ 5 D1

Property (P(Ag)) together with the hypothesis that (Kn)neN—{0} is not eventually
identically zero guarantee that

0< }L(Ao) <1
Also, because of |7(Ag)| < p(Ao), we have —1 < y(Xo) < 1, i.e.
0<I4+v(N)<2

In the particular case where (Gr)nen—{o} and (K7)nen—{o} are nonpositive and
Ap is less than or equal to 1, because of the fact that (K )nen—{o0} is not eventually
identically zero, the property (P()g)) can be written as —1 < (o) < 0, i.e.

0<1+4+9(X) <1
Furthermore, we set

_ [ +p0o)?
We can easily see that ©()\g) is a real number with
O(Xo) > 1.

Let us consider the special case of the (non-neutral) Volterra difference equation
(Eo) and let Ao be a positive oot of the characteristic equation (¥)o with the
property (Po(Mo)). In this case, we define

1 o= ;.
Yo(ho) = e > N7IK;

i=1
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and
1=~ ;.
uo(Ao)=3—0j§An 71K;l.

From the property (Po())) and the hypothesis that (K7)neN-—{o} is not eventually
identically zero it follows that

0 < po(ho) < 1.
So, since |79(Ao)| < po(Xo), we have —1 < Yo(Ao) < 1, namely
0<1+7(N)<2
If (Kn)neN_{o} is assumed to be nonpositive, then, by the fact that (Kn)nEN-{D}
is not eventually identically zero, the property (Po(Xo)) is equivalent to —1 <
Yo(d) <0, ie.
0<1 +’}’0(/\0) <1
Furthermore, we put
14 2
Saide) = [1 +?o(&)}
and we see that ©y()\g) is a real number with
eg(r\o) il

We notice that, in the special case of (Ep), the constants 7(X0), £(Ao) and O(Xg),
which are defined in the general case of (E), are equal to Yo(R0), £29(Ao) and Gp(N),
respectively.

Next, consider again a positive root Ay of the characteristic equation (*) with
the property (P(Xo)), and let ¢ = (¢, )ncz- be an initial sequence in S()\g). We
define

+ p1o(Xo)

L0ud) = 40436 [qb_j - (1- %) ¥ ( ) Aa’"@)]

=1 r=—j
1 oo » =1 .
+A_O§,\03Kj (r;j»\o @)
and
- 6) = —ny _ L0:9)
Mind)= =2 o™~ TGl

From the property (P()\¢)) and the definition of S(Xo) it follows that L(Ag;¢) is
a real number. Moreover, by the definition of S(2), M(Xo; ¢) is a nonnegative
constant.

Let us concentrate on the special case of the equation (Eo) and consider a positive
root Ag of the characteristic equation (%)o with the property (Po(Ap)) and an initial
sequence ¢ = (@, )nez- in S(Ao). In this special case, we have the constants

oo -1
Lo(X0; ¢) = ¢ + % D> NEK; ( > Ao"qsr)

=1 r=—j
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and

N - Lo(Mo; 4)
MO()‘O-r ¢) nset"lzp— ACl qsn 1_}_70(%)
instead of the constants L(Xo;$) and M()o; $) considered in the general case of
the equation (E). Property (Po(Ao)) and the definition of S(Ag) guarantee that
Lo(Ao; ¢) is a real number, and the definition of S()\g) ensures that Mo(Ao; @) is a
nonnegative constant.
Another notation used in the paper is the following one
N(Xo;¢) = sup (Ag™ ¢n[)
neZ~
for each positive root Ao of the characteristic equation (x) (resp., (x)o) with the
property (P(Xo)) (resp., (Po(Xo))) and for any initial sequence ¢ = (¢, )nez— in
S(Ao). Clearly, N()\o; #) is a nonnegative constant.
Furthermore, let Ag be a positive root of the characteristic equation (%) with
the property (P(\o)) and A; be a positive root of (¥) with A; < ). Let also
¢ = (¢n)nez- be an initial sequence in S()\g). We set

U, X1;9) = inf {"T" [‘f’n - %%%Ag]}

and

5 _ -n _ L(A0;¢) n
V(AO$A1!¢) uSEuZPl {Al [¢n 1 +7(/\0) j[ } -
From the definition of S(\o) and the hypothesis that A\; < Ag it follows that
U(Xo, A1;¢) and V (Ao, A1; @) are real constants.

In particular, consider the special case of (Eg). Let Ao be a positive root of the
characteristic equation (*)o with the property (Po()\o)) and X; be a positive Toot
of (¥)o with A1 < Ag as well as let ¢ = (¢,.)ncz- be an initial sequence in S(Xo)-
In this special case, we consider the real constants

Uo(Xo; A5¢) = inf {'\I_n [¢ﬂ - %%‘f.(%)\g] }

and

- Lo(Mo; 8) ]}
Vo(ho, M5 ¢) = su )\“[n——“
O(AG 1 ¢) nezp_{ 1 ¢ 1+']’0(AD)

in place of U(Ag, A1; @) and V(Ag, A1;$) considered in the general case of (E).

Before closing this section, we will give two well-known definitions. The trivial
solution of (E) (resp., of (Eo)) is said to be stable (at 0) if, for each € > 0, there
exists § = 6(¢) > 0 such that, for any ¢ = (¢,)nez- in S with ||¢|| = sup l¢,] < 8,

=

ne
the solution (zn)nez of (E)—(C) (resp., of (Eo)—(C)) satisfies |z,| < € for all n € Z.
Also, the trivial solution of (E) (resp., of (Eo)) is called asymptotically stable (at
0) if it is stable (at 0) in the above sense and, in addition, there exists 8¢ > 0 such
that, for any ¢ = (¢,)nez- In S with ||¢|| < do, the solution (z,)nez of (E)-(C)
(resp., of (Eq)—(C)) satisfies n]}'_)lr.}o:z:n = 0. Moreover, the trivial solution of (E)
(resp., of (Eo)) is called ezponentially stable (at 0) if there exist positive constants
A and n < 1 such that, for any ¢ = (¢, )nez- in S with ||¢|| < oo, the solution
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(Zn)nez of (E)—(C) (resp., of (Eo)—(C)) satisfies [zn| < An™ ||@|| for all n € N (see
Elaydi and Murakami [9]).

3. STATEMENT OF THE MAIN RESULTS

Our first main result is Theorem 1 below, which establishes a useful inequality
for solutions of the neutral Volterra difference equation (E). The application of
Theorem 1 to the special case of the (non-neutral) Volterra difference equation
(Eo) leads to Theorem 2 below.

Theorem 1. Let A be a positive oot of the characteristic equation (*) with

the property (P(X\o)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (Tn)nez
of (E)—(C) satisfies

_ L0 |

T+0g) | = HOIMOoi¢) forallneN.

Ao "Tn

Theorem 2. Let Ay be a positive Toot of the characteristic equation (x)g with
the property (Po(Xo)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (z,)nez
of (Eo)—(C) satisfies
’\O_nxn _ LO(’\O; 4{))

1+ 7o00) | = #0(20)Mo(Ao;¢) for alln € N.

Theorem 3 below provides an estimate of solutions of the neutral Volterra differ-
ence equation (E) that leads to a stability criterion for the trivial solution of (E).
By applying Theorem 3 to the special case of the (non-neutral) Volterra difference
equation (Eg), one can be led to the subsequent theorem, i.e. Theorem 4.

Theorem 3. Let Ao be a positive root of the characteristic equation (%) with
the property (P(Xo)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (Zn)nez
of (E)—(C) satisfies

|Zzn| < B(A0)N(No; $)AG  for all n € N.
Moreover, the trivial solution of (E) is stable (at 0) if Mo = 1 and it is asymptoti-
cally stable (at 0) if Ao < 1. In addition, the trivial solution of (E) is exzponentially
stable (at 0) if Ag < 1.

Theorem 4. Let Ay be a positive root of the characteristic equation ()o with
the property (Po(Xo)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (z,)ncz
of (Eo)—(C) satisfies

2] < Bo(Ao)N(Ao; $)AG  for all n € N.

Moreover, the trivial solution of (Ey) is stable (at 0) if Ao =1 and it is asymptoti-
cally stable (at 0) if Ao < 1. In addition, the trivial solution of (Eo) is ezponentially
stable (at 0) if A\g < 1.

It must be noted that Theorems 2 and 4 for the (non-neutral) Volterra difference
equation (Eg) can be considered as substiantally improved versions of the main
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results of the previous authors’ paper [31]. One can easily see the connection
between Theorems 2 and 4, and the main results in [31].

The following lemma, i.e. Lemma 1, gives sufficient conditions for the charac-
teristic equation (+) to have a (unique) root Ag with the property (P()\o)). The
specialization of Lemma 1 to the special case of the characteristic equation (x)o
is formulated below as Lemma 2. We notice that Lemma 2 has been previously
proved in the authors’ paper [31].

Lemma 1. Assume that there erists a positive real number vy such that

[o o] oo
(Hy) Z"y_j |Gj| < o0 and Z'y_j |K;| < o0,
j=1 i=1
m . m -
(Hy) A-ND 776G+ 7 K;>v-1-a
j=1 i=1
and
[o o] i 1 1 o o] .
(Hs) S [+ (143) 61+ 2 s <1
F=1 4 £ =1

Then, in the interval (v, c0), the characteristic equation (x) admits a unique root
Ao; this Toot has the property (P()g)).

Lemma 2. Assume that there exists a positive real number ~ such that

(Hi)o bl Y e
=1

(H2)0 Z'y*jKj>'y—1—a

i=1

and
L= .

(Hz)o =Y vijlKi <1,
i 4 )

Then, in the interval (7, c0), the characteristic equation (x)o admits a unique
To0t Xo; this root has the property (Po(Xg)).

Theorem 5 and Corollary 1 below concern the behavior of solutions of the neutral
Volterra difference equation (E), while Theorem 6 and Corollary 2 below are dealing
with the behavior of solutions of the (non-neutral) Volterra difference equation (Eyp).

Theorem 5. Suppose that (Gn)nen—qo} and (Kn)nen—{0} are nonpositive.
Let Ag be a positive root of the characteristic equation (+) with Ag < 1 and with the
property (P(Xo)). Let also Ay be a positive oot of () with \; < Xo. Then, for any
® = (¢n)nez- in S(Xo), the solution (Tn)ncz of (E)—(C) satisfies

L(Xo; ¢)

U0, A3 4) < AT™ [""“ T 1+9(0)

)\3’] <V(Ao, M1;9) forall n e N.
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We immediately observe that the double inequality in the conclusion of Theorem
5 can equivalently be written as follows

A\™ - L(Xo; AR
U(Xo, A159) (-)i-) o e T—i(-_,\—;)(% < V(Ao, A1;9) (-5\%) for n € N.

Consequently, since A; < Ag, we obtain
- y=n \_ L(o;9)
nli»ngo (AO In) 1 +v(Xo)’
which establishes the following corollary.

Corollary 1. Suppose that (Gn)nen-{o} and (K#)nen—{0} are nonpositive.
Let g be a positive root of the characteristic equation (%) with Ao < 1 and with the
property (P(A)). Assume that (*) has another positive root less than Ao- Then, for
any ¢ = ($p)nez- in S(Xo), the solution (zn)nez of (E)—(C) satisfies

! —a,_ y\ _ L(ho; 9)
A, (5720) = 2060y

Theorem 6. Suppose that (Kn)nen_{u} s nonpositive. Let Ay be a positive
To0t of the characteristic equation (x)o with the property (Po(Ao)). Let also \q be
a positive Toot of (x)o with Ay < Ag. Then, for any ¢ = (Dn)nez- in S(Xo), the
solution (Zn)nez of (Eo)—(C) satisfies

Uo(ho, Mi¢) < A7™ [:cﬂ _ LoQeid)

1 +’Yo(r\0))\3] < Vo(ho,A134) forall neN.

We see that the double inequality in the conclusion of Theorem 6 is equivalently
written as

Bl Xz ) (i‘_;) <Az, — 1%%(1% < Vo(Ro, Ais 6) (%) forn e N.

So, as A; < A, we have

. e Lo(Xo; ¢)
Iim (Ag"z,) = ——2 72,
n—oo ( 9 ) 1+ '70()*0)
This proves the following corollary.

Corollary 2. Suppose that (Kn)nEN-—{O} s nonpositive. Let Ay be a positive
700t of the characteristic equation (x)o with the property (Po(Ao))- Assume that
(*)o has another positive root less than M. Then, for any ¢ = (¢,,)nez- in S(Do),
the solution (Zn)nez of (Eo)—(C) satisfies

. —n_ \ _ Lo(Xo;¢)
A, 8 ) = T 0o

Now, we state two propositions (Propositions 1 and 2) as well as two lemmas
(Lemmas 3 and 4). Proposition 1 and Lemma 3 give some useful information about
the positive roots of the characteristic equation (*), while Proposition 2 and Lemma
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4 are concerned with the special case of the positive roots of the characteristic
equation (x)g.

Proposition 1. Suppose that (G’,,),,EN_{D} and (Kn)neN—{o} are nonpositive.
Let Ao be a positive Toot of the characteristic equation (*) with Ao < 1. If there
exists another positive root A; of () with Ay < A such that

(Q(\)) D A7IG <00 and 3" ATjIKG| < oo,
=1 =1

then Ao has the property (P(A)).

Proposition 2. Suppose that (Kn)neN—{0} is nonpositive. Let Ao be a positive
root of the characteristic equation (x)o. If there exists another positive oot Ay of
(*x)o with \; < Ag such that

(Qo(A1)) D AT IKS] < oo,

=1

then Ao has the property (Po(Ag)).

Lemma 3. Suppose that (Gn)nen—jo} and (En)nen—{o} are nonpositive.
(I) If a=0, then A =1 is not a root of the characteristic equation (*).
(II) Assume that a = 0 and that

(Ha) Yolej<1.

=1

Then, in the interval (1,00), the characteristic equation (%) has no roots.
(III) Assume that

(Hs) > 3lGs] < o0,
Jj=1
(He) DolGi+Y ik <1
=1 i=1
and
(H7) > Ik > a
j=1

Then, in the interval (1,00), the characteristic equation (*) has no roots.
(IV) Assume that (Hy) holds, and let there ezist a positive real number v with
v<1and vy<a+1 so that

oo o0
(Hs) Z’Y_jj |IGjl < oo and Z'y"jj |K;| < o0
J=1 =1
and
oo X oo .
(Ho) A= 771G+ v K| >a+1—1.

i=1 =1
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Moreover, assume that there ezists a real number & with § > 0 and a < § < a+1l—7y
such that

(Hyo) 6-a)) (@+1-6)77|G;| + Y a+1-6)77|K;| <.
=1 =1

Then: () A=a+ 1§ is not a root of the characteristic equation (%). (@) A=~
is ot a oot of (x). (iii) In the interval (a+1— 6,1], (x) has a unigue root. (iv)
In the interval (yv,a+1—§), (*) has a unique root. (Note: We have § > 0 and
Y<a+1l-46<1)

Lemma 4. Suppose that (Kn)nEN_{g} is nonpositive.

(I) @ > —1is a necessary condition for the characteristic equation (x)o to have
at least one positive Toot.

(IT) The characteristic equation (*)o has no positive roots greater than or equal
to a+1.

(III) Let a > —1 and let there exist a positive real number v with vy < a+ 1 so
that

(Hs)o > v ilKj < o0
=1
and
i -
(Ho)o Y v IIK| >a+1-1.
j=1

Moreover, assume that there exists a real number & with 0 < & < a + 1 — -y such
that

(Hio)o Z(a +1-6)77|K;| < 6.

=1

Then: (i) A =a+1—46 is not a root of the characteristic equation (*)o- (i) A=+
is not a oot of (x)o. (iil) In the interval (a + 1 — §,a + 1), (x)o has a unique
root. (iv) In the interval (y,a+ 1 — §), (*)o has a unigue root. (Note: We have
7<a+l-46<a+1)

It is an open problem to examine if Theorem 5, Corollary 1 and Proposition 1
remain valid without the restriction that the root Ap of the characteristic equation
(*) satisfies Ag < 1. Such a restriction is not a necessity in the non-neutral case
(i.e., in Theorem 6, Corollary 2 and Proposition 2%

Our main results can be extended to the more general case of the linear neutral
Volterra-delay difference equation with infinite delay

oo n—1 co n—1
Az, + Zc;znum. + Z Gn_jz; | =axn + Eb,—:cn_n + Z K, jz;

i=1 j=—o0 i=1 j=—o0
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and, especially, of the linear neutral Volterra-delay difference equation with infinite
delay

co n—1
Az, = az, + E biTn—r, + E K,_;zj,
i=1 Jj=—o0c

where ¢; and b; (i = 1,2,...) are real numbers, and o; and 7; (i = 1,2, ...) are
positive integers with 0, # 03, and 75, # 7i, (81,42 = 1,2,...; i1 # 4a).

The neutral Volterra difference equation with infinite delay (E) can be consid-
ered as the discrete version of the neutral Volterra integrodifferential equation with
unbounded delay

(B) [a:(t) + f_ ; G(t - s):z:(s)ds], = az(t) + f_ ; K(t — s)z(s)ds,

where a is a real number, G and K are continuous real-valued functions on the
interval [0, 0), and K is assumed to be not eventually identically zero. In particular,
the (non-neutral) Volterra difference equation with infinite delay (Eq) can be viewed
as the discrete version of the (non-neutral) Volterra integrodifferential equation with
unbounded delay

(Bo) 7'(t) = az(t) + f_ t K(t — s)z(s)ds.

The results obtained in this paper should be looked upon as the discrete analogues
of the ones given by Kordonis and Philos [18], Kordonis, Philos and Purnaras [21],
and Philos and Purnaras [36], for the neutral Volterra integrodifferential equation
with unbounded delay (E) and, especially, for the (non-neutral) Volterra integrod-
ifferential equation with unbounded delay (Eo).

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let ¢ = (¢,)nez- be an initial sequence in S()g), and
(zn)nez be the solution of (E)—(C).
Define

Yn=2Ag zn, formelZ.

Then, for each n € N, we obtain

n—1 n—1
A (:rn+ Z Gn_jasj) —az, — Z Kyizs

Jj=—o0 j=—00
oo oo
= Alz,+ ZGjIn_j — ATy — ZKjIn_j
=1 =1

=1

oo co
= A [Ag (yn + ZA(TJGjyn—j)} = GAgyn - Ag ZAEJijn_J'
3=1
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= 38 [)\oA (yn +3 N7 Gjyn—j) +(o—1) (yn +) a7 Gjyn~j)

=1 i=1

oo
—QYn — Z A(-)_JI{,:r‘y'n,—_g:I

i=1

i=1

= X [AoA (yn +3 257 G:iyn—j) + (o - 1—a)yn

+o—1) Y A7Gpy =Y Ay jijn—:}

i=1 j=1

= X3 [ADA (y +Zxajejyn_j) — (o —1) (Z Wj) Yn

j=1 i=1

+ (Z AJ"K,-) ¥t (R0 —1) Y N7 Giyn_j - ZAajijn_jJ
j=1

g1 =1

=1

= X leA (y +> A;"G,-yn-j) ~ o =1) Y A57G; (yn — yny)
j=1
+Y XK (yn — yw-)] :
j=1

So, (Zx)nez satisfies (E) for n € N if and only if (Yn )nez satisfies

(4.1) A (yn + ZAajGjyn——j) = (1 — %) ZAq)_jGj (yn = yn—j)
i=1 j=1

1 o=, _;
-—A—OZ)\OJKj(yn—yn_j) for n € N.
=

Moreover, the initial condition (C) can equivalently be written as
(4.2) Yn=X "¢, forneZ .
Furthermore, we see that (4.1) becomes

o0 oo n—1
2 (wzm-yn_j) = (1-%) o xiea ( > )
=1

j=1 T=n—j

] n—1
“%ZWK:‘A (,Z y)

=1 =n—j

53
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_ A{(g)zm(z)

r=n—j

for n € N. Thus, we have

oo oo n—1
Unt+ D N7 Cjyn—j = (1 - -;-5) pprader ( > y,-)

F=1 =1 r=n—j
1 oo . n—1
% YONTK Y w44
i=1 r=n—j
for every n € N, where
[==] -1
A= (w6 | - (1- —) S 3596 [ 3w
=1 Jj=1 r=—j
1 oo
+A_OZAOJK (r_Z—JyT)-

But, by using (4.2) and taking into account the definition of L(Ag;¢), we can
immediately verify that A = L(Ag;¢). Hence, (4.1) takes the following equivalent
form

43) yn+§:)\ﬁj3jyn—j = (1 — —) Z/\OJG ( nf y)

j=1 r='n_—j
n—1
A_JK | + L(Ao; forn € N.
"% ; r;n_jy (Ao; #)
Next, we set
L(Xo; 9)
Zp =Ynp — ——— forneZ.

¥ T ()

Then, we take into account the definition of y()\g) to show that (4.3) may equiva-
lently be written as follows

(4.4) zn+Z)\0 azn—a—(l——)Z’\cT"G (nzl )

r=n—j

0 n—1
—%ZA;J'KJ— ( Z z,.) forn € N.

r=n—j
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On the other hand, the initial condition (4.2) becomes
L(Xo; ¢)
1+7(o)

Now, by taking into account the definitions of (¥a)nez and (2,)nez, we conclude
that what we have to prove is that (2n)nez satisfies

(4.6) |20l < #(A0)M(R0;¢) for all m € N.

In the rest of the proof we will establish (4.6). From (4.5) and the definition of
M(Xo; @) it follows that

(4-5) Zn =Xy ", — forneZ~.

4.7 |zn| < M(Xo;¢) forn e Z.
We will show that
(4.8) |za] < M(Ao; ) for all n e Z.

For this purpose, let us consider an arbitrary real number € > 0. Then (4.7
guarantees that

(4.9) [za] < M(Xo;¢) +€ forneZ™.
We claim that
(4.10) |zn] < M(Xo;¢) +€ for every n € Z.

Otherwise, because of (4.9), there exists an integer ng > 0 so that
[zn| < M(Xo;¢) +€ forneZ withn <ng—1
and
|2no| = M(Xo; $) + €.

Then, by taking into account the definition of #(Ao) and the fact that 0 < u(Xg) < 1,
from (4.4) we obtain

M(Ao;0) + €
[oe] » 1 o0 . ng—1
< lonal < 3057 Gyl ol + 1= SN IGH [ 3
=1 0= r=no—j
1 [se] ] no—1
+;;Z)\EJIK:;| >
j=l ‘rzno—j
<

{f 3 (14 1= ) 1651+ = 35 :K,-IJ [M(30;4) + o
=

j=1
= o) [M(Xo; 6) + €] < M(2o;9) +e.

This is a contradiction and consequently our claim is true, i.e., (4.10) holds true.
Since (4.10) is fulfilled for all numbers € > 0, we conclude that (4.8) is always
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satisfied. Finally, using (4.8) and taking again into account the definition of (o),
from (4.4) we derive, for every n € N,

oo . 1
el < SN 1G5 2mmg] + ‘1 %
>

) n—1
pp e ( 3 lzf|)
j=1

r=n-—j

1 o=, =
35 27 K] (,_Z |zr|)

Jj=1 =n—j

IA

Léw‘ (11 l) o+ 3, 00 IKJ-I} M0%:4)

#(20) M (Ao; )-

Consequently, (4.6) has been proved.
The proof of our theorem is complete.

Proof of Theorem 3. Consider an arbitrary initial sequence ¢ = (p)nez- in
S(Xo) and let (z2)nez be the solution of (E)—(C). Then, by Theorem 1, it holds

- L()o; ¢) )
Ay Tn — m < #(Ao)M(Ao;¢) forallm €N,
which leads to
357 bl < 28O 40)0 (039 for every n € N,
On the other hand, the definitions of M (\g; ¢) and N (Ao; @) give
. . |Z(Xo; 8)|
M(6;) < N(oi9) + 1 2.
Thus, we have
(4.11) A0 |zl < i—_t%% |Z(A0; @)| + (Ao)N (No; ¢) for n € N.

But, from the definition of L()o; ¢) it follows that

IZ(2o; 9)] 6ol + > 1G] []¢_j| + ’1 - :\1;

IA

i=1

o’ (gjj 2" |¢,|)J

0 =1
+30 207 1K (Z X |¢T|)
J=1 r=—j
-1
(Z‘Aa’ |¢T|)J Gl

i=1

oQ o e 1
= ol + -7 [Ao‘ ? |¢_J-l+{1-;5

oo -1

N ( 3 %" |¢,|) 15,

j=1 r=—3
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which, because of the definitions of N(\o; ¢) and £(Ao), yields
[L{Xo; #)]

1+ A7 (1 + ‘1 -~ ifj) G5 + —I—Zz\ajj I&;1| N(o; 6)
=1 AD A0_',1'=1

= [14 p(X)] N(Xo; ¢)-
This together with (4.11) give

2
25" |2l < {% +p(Ao)}N(A0;¢) forne N

and hence, by taking into account the definition of ©(Xo), we have

(4.12) |Z| < O(Ro)N(Mo; $)AT  for all n € N.

We have thus proved the first part of the theorem.

Next, we will establish the stability criterion contained in our theorem. Assume
that Ag < 1. Consider an arbitrary bounded initial sequence ¢ = (¢, )nez- in S
and define

IA

¢l = sup |g,].

neZ—

As Ao < 1, we immediately see that ¢ = (#n)nez- belongs to S(Ao) and, in addition,
that
(4.13) N(%oi9) < [4]]-
The solution (5 )nez of (E)—(C) satisfies (4.12). By combining (4.12) and (4.13),
we obtain
(4.14) [z < ©(Xo) |§]| A§  for every n € N.
Since Ag < 1, it follows from (4.14) that

|Za| < ©(20) [|4]] for any n € N.
Thus, as ©(Ag) > 1, we always have
(4.15) || < ©(Xo) ||@|| for all n € Z.

We have proved that, for any bounded initial sequence ¢ = (¢, )nez- in S, the
solution (z»)nez of (E)—(C) satisfies (4.14) and (4.15). From (4.15) it follows that
the trivial solution of (E) is stable (at 0), provided that Ao < 1. Finally, if Mg < 1,
then (4.14) ensures that

limz, =0

n—oo

and hence the trivial solution of (E) is asymptotically stable (at 0). Finally, if Ay <
1, then it follows from (4.14) that the trivial solution of (E) is also exponentially
stable (at 0).

The proof of the theorem has been finished.

Proof of Lemma 1. Assumption (H;) guarantees that

oo o0
Z/\_jIGj|<°O and Z)\*j!Kj[<oo, for all A >«

i=1 =1
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and hence the formula

F)=(A-1) (1 + irfc_.,-) —a— i/\_jKj for A > v

defines a continuous real-valued function on the interval [y,c0). From condition
(Hs) it follows that

(4.16) F(vy) <.
Furthermore, for each A > «, we obtain

i b\aler

=1

< YaTigl= 15 agy

=1 =1

1 oo ’Y oo
1y = X i,
& X;’Y TG = AZ’Y 71G;l

=1

and consequenly, by the first assumption of (H;), we have

oe .
lim A7G;=0.
A—r00 £
g=1
In a similar way, one can see that
hicd .
lim AT K;=0.
A—o0
=1
So, we immediately verify that
(4.17) F(o0) = oo.

Now, by using the hypothesis that (Kn)ﬂeN_{o} is not eventually identically zero
as well as condition (Hjz), we derive for A > v

— . [ 13 ] 1= _;
, _ ; i,
F(A) = 1+Z)\J lﬁ(l—X)J Gj“f'xZA J_?Kj
j=1 - - i=1
e [ 1) ] Ly i
2 1-3 % (143 a6l - 53 a5 K
i=1 . ) i=1
o __- 1 '- 1 oo o
> 1-377 1+ (14+3) 51631 - 2 051k
i=1 o - Jj=1
> 0,

which means that F' is strictly increasing on (v, o). This fact together with (4.16)
and (4.17) guarantee that, in the interval (v,00), the equation F(A) = 0 (i.e.,
the characteristic equation (+)) has a unique root Ag. Finally, by using again the
hypothesis that (K,)»en-{o} is not eventually identically zero as well as condition
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(Hz), we get
20 , 1 i & .

,\—J(1+[1-_'-)G-+_ 31K

;o |76l AO;)\OJIJI

20 . 1 i 2 .
X7 1+ (1+ +) j] 1Gil+ — 3 A3%5 K]
o 1% g

< 3oy [1+ (l+;)3} IGjI+;,Z'r 77 1Kl
j=1 Jj=1

2 i,

IA
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So, the root Ag of the characteristic equation (*) has the property (P())). This

completes the proof of the lemma.

Proof of Theorem 5. Let ¢ = (¢,)nez- be an arbitrary initial sequence in
S(X), and (z,)nez be the solution of (E)—(C). Define (yn)nez and (za)nez as in
the proof of Theorem 1. As it has been shown in the proof of Theorem 1, the fact
that (25)ncz satisfies (E) for n € N is equivalent to the fact that (2n)nez satisfies

(4.4), while the initial condition (C) becomes (4.5). Furthermore, set

A1
Then it is easy to see that (4.4) can equivalently be written as follows

@18) wnt 3 AT Gpwn; = (1 -x) g;f\ajcj [ 3 (Aﬁ;) o er

=1 r=n—j

wy, = (ﬁ) z, fornelZ.

=1 =n—j

0 n—1 n—r
_%Z,\O—J‘Kj'rz (:\\—3) w,-J forn e N.

Moreover, the initial condition (4.5) is written in the following equivalent form

(4.19) Wy = A" [¢n - %‘% "} forneZ .

In view of the definitions of (Yn)nezs (2n)nez and (Wn)nez, we have

—-n L(’\O; ¢) n}
4.20 Wy = A Ly — —— forn e Z.
From (4.19) and the definitions of U()g, Ay; ¢) and V (A, A1; @) it follows that
U(Xo,A1;¢) = inf w, and V(Xo, A1;0) = sup ws.
sEZ— SEF~

So, by taking into account (4.20), we immediately conclude that all we have to

prove is that (wy,),cz satisfies

inf w; <w, < supw, for all n € N.
SEZ— sEZ-

We restrict ourselves to show that

(4.21) Wy, > mzf ws for every n € N.
sEd—
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In a similar manner, one can prove that

wn, < sup ws for every n € N.
SEZ-

In the rest of the proof we will establish (4.21). To this end, it suffices to show

that, for any real number D with D < inf w;, it holds
se€Z—

(4.22) wn, > D for alln € N.

Let us consider an arbitrary real number D with D < Slenf_ws Then we obviously
have

(4.23) wnp>D forneZ™.

Assume, for the sake of contradiction, that (4.22) fails. Then, because of (4. 23),
there exists an integer ng > 0 so that

w,>D forn€eZwithn<ng—1
and
W, < D.

Hence, by using the hypothesis that (G )nen— {0} and (Kn)nen—{o} are nonpositive
and that ( n)nEN_{g} is not eventually identically zero and taking into account
the assumption that Ag < 1, from (4.18) we obtain

D > = —Z,\ G jWno—j + (1 - —) ZAO—JG [ ni‘l (%’-)na_rwr}

=1 r=no—j

_ Aio i 2 K; {f (,\ﬁ)_ wf}

=no—j

i=1 (1__ Z/\E’GJ [j”i ( no_,}

\%
w]
/——‘h
M
27
Q
+

Il
,__/_\
M
2
.

0
+
e
|
&=
S——’
i [~]8
31
£
Mu
|&
b
| e |

| 2

f'--"\
IS’
l
|_|
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1 2 . .i-g'l: 1)j_1:'
g T S
—EE:A“ K; =5

~
G

r

3=1 j=1

S [)-1)
D

do— M {‘“"0 O Cam IR AT + 0o 1)3_2 (A -27) G

oo . co X 7
- /\B"_J/\l {—(AD-,\l)ZA;-?Gj+(A0—1)Z,\g-’aj K%‘l’-) -1J

53 (7 -7) K.-,-}

=1

D s i
Sl {{—(Ao—l);% Gi+ 2% K,]

- [—(Al ~1) fj»\;jGj + i)\;"&] }

D

Ao — A1
= D.

[Fo-1-a)- (A1 —1-0q)]

This contradiction shows that (4.22) holds true.
The proof of the theorem is now complete.

Proof of Theorem 6. First, let us notice that the main difference between the
neutral case and the non-neutral one is the existence (in the neutral case) of the
terms

i M Gijwn;

=1

(1-2) S, {z (A-a)}

i=1 =n—j

and

in (4.18), which do not appear in the non-neutral case. In the special case of the
(non-neutral) Volterra difference equation (Eq), (4.18) becomes

1 oo ) n—1 AO n—r
wn=_3\.5jz=;)\031{j Z ()\_1) wr| forneN.

r=n—j
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The need for assuming, in Theorem 5, that the root Ag of the characteristic equation
(*) is such that Ao < 1 is due only to the existence of the second of the above terms
in (4.18). After the above observations, we omit the proof of the theorem.

Proof of Proposition 1. Assume that there exists another positive root A; of the
characteristic equation (*) with A; < Ag such that (Q();)) holds. Clearly,

e ] oo
> A?G; and ) AUK; existinR.
So, since (Gr)nen—{o} and (Kn)nen—{0} are nonpositive, we must have

o0 o0
Y A7IGi <00 and YA |KG| < co.
i=1 j=1
(This fact can also be obtained from (Q();)).) This guarantees that

o0 oo
D A7|Gjl <o and Y XT|Kj| <o, forall A A
and consequently the formula

oo o0
F(A)=(‘\_1) 1+ZA_jGj _G—Z)\HjKj fOI'AzAl
j=1 j=1
defines a real-valued function F on the interval [\;, 00). It follows from assumption
(Q(A1)) that

o0 o0
> X 75|Gjl < oo and D> XTj|K; | <oo, forall A,
j=1 Jj=1

which ensures that F is differentiable on [A;, co) with

o0 o0

FiA) =1+ X7 [1 - (1 - %) j] G;+ ;z:xjjkj for A > A
j=1 j=1

Furthermore, by using the hypothesis that (Gr)nen—{0} and (Kn)nen—qo} are

nonpositive and (K»)nen—{o} is not eventually identically zero, it is not diffi-

cult to check that F” is strictly increasing on the interval [A;,1]. (We notice that

0<AM<XH<1)

Now, observe that F'(A;) = F(Ag) = 0, and so an application of Rolle’s theorem
ensures the existence of a real number £ with A; < £ < Ag so that F'(¢) = 0.
Since F" is strictly increasing on [, 1], it follows that F” is always positive on (&,1].
Hence, as £ < Ag < 1, we conclude, in particular, that F/()g) > 0, namely that

e 1Y) . 1 2
1+E AOJ [1_(1—36)3:[034_}_0 E AO‘?jKj>0.
j=1 3=1

By taking into account the fact that (Gp)nen—{0} and (Kn)nen—{o} are nonpositive
and that Ay < 1, we see that the last inequality can equivalently be written as

follows
oo

4 1]. 1 o= g
1= 357 (14 1= 5o |1) 1651- £ S x> o
Jj=1

i=1
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which means that Ao has the property (P()o)).
The proof of the proposition is complete.

Proof of Proposition 2. Let A; be a positive root of the characteristic equation
(*)o satisfying (Qo(\1)). Then it is obvious that

(o<}
ZAl_jKj exists as a real number
Jj=1

and consequently, as (K,),en-{o} is nonpositive, we have

&9 -
S AT K] < o0

=1
(Note that this fact is also a consequence of (Q (A1))-) Therefore,

(o ]
Y AT IK | <o forall A> )

i=1
and so we can define the real-valued function Fy on the interval [A1, 00) by

FoM)=A—-1-a- Y X7K; forA>\,.

i=1

Assumption (Qo(A1)) guarantees that

o0
D> A5 |K;| < oo forall A> N

i=1

and hence Fj is differentiable on [A;, c0) with

oC
Fi(A) =1+ ;ZA-ijj for A > ;.
=1
In view of the hypothesis that (Kn)nen—{o} is nonpositive and not eventually iden-
tically zero, we can see that Fy is strictly increasing on the interval [A1,00).
As Fo(A1) = Fo(Xo) = 0, it follows from Rolle’s theorem that F3(&) = 0 for some
£ with Ay < § < Ag. Since FY is strictly increasing on [€,00), F} is positive on the
interval (€, ). This gives, in particular, that Fj(A) > 0, i.e.

1 o~ _;
il =5 g
1+/\0§1)~0 jK; > 0.
Finally, by taking into account the fact that (Kr)nen—{o} is nonpositive, we im-
mediately see that Ag has the property (Po())), which completes our proof.

Proof of Lemma 3. (I). Let us consider the case where @ = 0. Then the
characteristic equation (*) takes the form

(%)’ (A=1) (1 + i,\—je,-) = i,\-fffj.

J=l
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From the hypothesis that (K. n)neN-{0} i nonpositive and not eventually identically
zero it follows that

oo
ZKj < 0.
=1

Consequently, A = 1 cannot be a root of (*)'.
(IT)- Assume that (x)' has a positive root p with g > 1. Then

(-1 (1 + Zu—jGj) = Zp‘jKj.
i=1

=1

In view of the fact that (Gn)neN_{g} is nonpositive and because of the assumption

(Hy), we get
1+ p9G; 21+ Gi=1-3"|g;| > 0.
i=1 j=1 j=1
Thus,

(r—1) (1 + f:prfc,-) >0.

=1

On the other hand, since (Kn)nen—{o} is nonpositive and not eventually identically
zero, we have

ke .
> wE; <.
j=1

We have thus arrived at a contradiction.
(III). A particular consequence of assumption (Hg) is that

oo
(4.24) D i1K;| < .

=1

Assumption (Hs) and (4.24) imply, in particular, that
o0 o0
Y IGil<oo and Y |Kj| < oo,
j=1 j=1

(Note that the first of the these facts can also be obtained from (Hg).) Thus, we
can immediately conclude that

A77|Gj] < 0o and A7 |K;| <o, forall A>1.
7 3

=1 i=1
So, the formula

FA)=O-1) (1 +i)\‘jG,~) —i— iA‘J’K,- for A>1

F=1 j=1
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introduces a real-valued function F' on the interval [1,00). From (Hs) and (4.24) it
follows that

oo o
D> X 7|6l <0 and D A7j|K;l < oo, forall A>1
=1 j=1
and consequently the function F is differentiable on [1,00) with

FA) =1+ A [1— (1— %) j} Gj+%ZA_ijj for A > 1.
i=1

i=1

Furthermore, by the hypothesis that (Gn)nen-{o} and (Kn)neN—{o} are nonposi-
tive and (Kn),,eN_{g} is not eventually identically zero, we obtain for A > 1

F'(A)) = 1+ E"" N 1._1 Eoo Ad 'G~+l EOO A,
- ) b IG5 A T8
j=1 =1

=1
oo . 1 o0 iy 1 oo .
= =276+ (1-3) S A1G1 - £ oA K
i=1 j=1 i=1

oo . 1 oo o
> 1—5_;/\ 71651 = 5 DAk
j= j=1

o0 oo
> 1-Y 1G5 - i K-
=1 =1
Hence, by assumption (Hs), we find

F'(A) >0 for every A > 1.

This implies that F is strictly increasing on the interval (1,00). Since (En)nen—{o}
is nonpositive, assumption (H;) means that

(4.25) F{1y> 0.
Thus, the characteristic equation () cannot have roots in the interval (1,00).

(IV). Assumption (H7) means that (4.25) is true. Furthermore, assumption
(Hg) guarantees, in particular, that

(e <] . oo i
E 77|Gj| <oo and E 77 |K;| < 00
=1 =1

and consequently

oo oo
Z'\_j|Gj|<°° and Z-‘\_lejI<OO, for all A > .

=1 i=1

So, the formula

FA)=(A-1) (l'f'i/\_j(;j) ha—i)\_jK,- for A >~

J=1 F=1
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defines a real-valued function F on the interval [y,c0). From assumption (Hs) it

follows that
29 . e -
Y x751Gi < oo and Y AFj|K | < 0o, forall A4,
j=1 §=1

which ensures that the function F is differentiable on [v, o0) with
oC o0
’ 1 1 .
F)=1+Y X7 [1 - (1 — X) j] Gi+y Y ATiK; for Az
j=1 i=1
By using the hypothesis that (Gn)nen—{oy and (Kn)neN—{o} are nonpositive and

(Ka)neN—{o} is not eventually identically zero, we can easily verify that F’ is
strictly increasing on the interval [, 1]. Consequently,

(4.26) F is strictly convex on [y, 1].

Furthermore, we take into account the fact that (Gr)nen—{o} and (Kp)nen—{o0}
are nonpositive to conclude that assumption (Hg) means that

(4.27) F(y) >0,
while assumption (Hjp) means that
(4.28) Fle+1-4) <.

A particular consequence of (4.27) is that A = + is not a root of (*). Similarily,
(4.28) guarantees, in particular, that A = a + 1 — 4 is not a root of (*). Moreover,
from (4.25), (4.26) and (4.28) it follows that, in the interval (a + 1 — 4, 1], (%)
has a unique root. Finally, (4.26), (4-27) and (4.28) ensure that, in the interval
(7,e+1—6), (*) has also a unique root.

The lemma has now been proved.

Proof of Lemma 4. (I) and (II). Let us assume that the characteristic equation
(*)o admits a positive root y. Then

L— 1——a=2;.a'jKj.
=1
Since (Ky)nen-{o} iS nonpositive and not eventually identically zero, we always
have

20 .

Z,U._JKJ‘ <0.

i=1
So, we must have p — 1 —a <0, i.e. 4 < a+ 1. This shows Part (IT). Moreover, it
follows that a + 1 > 0, namely @ > —1, and hence Part (I) has been established.

(III). From assumption (Hsg)o it follows, in particular, that
777 1K | < oo,
7=1

which guarantees that

o0
S AT IK;| < oo forall A 1.

=1
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Hence, we can define the real-valued function Fy on [, 0) by the formula

o0
FoA)=A-1-a—> X7K; fora>1.
j=1
By (Hg)o, we see that

oo
D XKy < oo forall A >y
=1

and consequently Fj is differentiable on [, 00) with

1o~ _;
’ —_— e y .
W) =1+ XJZ:;A IjK; for A> 1.
Furthermore, the hypothesis that (Kn)nGN—{D} is nonpositive and not eventually
identically zero ensures that Fy is strictly increasing on the interval [, 00). So,

(4.29) Fy is strictly convex on [y, c0).

Now, as (Kn)neN_{o} is nonpositive, assumption (Hg)o means that
(4.30) Fo(v) >0,

while assumption (H;g)g means that

(4.31) Fole+1-46) <.

From (4.30) it follows, in particular, that A = + is not a root of (*)o, while (4.31)
ensures, in particular, that A = a+1 —§ is not a root of (*)o. Next, by taking into
account the fact that (Kn)nEN—{O} is nonpositive and not eventually identically
zero, we see that

(4.32) Fo(a+1) > 0.

Because of (4.29), (4.31) and (4.32), we conclude that, in the interval (a+1-4,a+1),
(*)o has a unique root. Moreover, (4.29), (4.30) and (4.31) guarantee that, in the
interval (v,a+ 1 — ), (x)o admits also a unique root.

We have thus completed the proof of our lemma.
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ABSTRACT

Consider the first-order linear delay differential equation
2'(t) +p(t)z(7(t) =0, t >t (1)
and the second-order linear delay equation
2'(t) + p(&)a(r(H) =0, > o, (2)

where p € C([to, 00), RT), 7 € C([to, ), R), 7(t) is non-decreasing, 7(t) < t for
t >ty and tlimT(t) = 00.

'The most interesting oscillation criteria for Eq.(1), especially in the case where
£ 1 1
0 < liminf p(s)ds < = and limsup/ p(s)ds < 1,
tmee Jra) € tmoo Jr(t)
and for Eq. (2) when
t 1 t
lim inf 7(s)p(s)ds < = and limsup/ T(s)p(s)ds < 1
B Jre) & oo Jr(t)

are presented.

®Key Words: Oscillation; delay differential equations.
2000 Mathematics Subject Classification: Primary 34K11; Secondary 34C10.
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1 Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions
to the first-order differential equation

z'(t) + p(t)z(T(t)) =0, t > to, (1)
and the second-order equation
z'(t) + p(t)z(7(t)) = 0, t = to, (2)

where p € C([to,00),R*) (here RT = [0,00)), 7 € C([to,c0), R), 7(t) is non-
decreasing, 7(t) < t for t > tp and lim;_., 7(f) = oo, has been the subject of
many investigations. See, for example, [1-65] and the references cited therein.

By a solution of Eq.(1) [resp. Eq.(2)] we understand a continuously differ-
entiable function defined on [7(7}),00) for some Ty > to and such that Eq.(1)
[resp. Eq.(2)] is satisfied for ¢ > Tp. Such a solution is called oscillatory if it has
arbitrarily large zeros, and otherwise it is called nonoscillatory.

In this paper our main purpose is to present the state of the art on the
oscillation of all solutions to Eq.(1) especially in the case where

t ¢
0 < lim inf p(s)ds < = and ]imsup/ p(s)ds < 1,

e Jr(e) ¢ t=eo Jr(t)

and for Eq.(2) when

t it
lim inf T(8)p(s)ds < é and lim sup/ 7(s)p(s)ds < 1.

oo ) t=oo Jr(t)

2 Oscillation Criteria for Eq. (1)

In this section we study the delay equation
Z'(t) +p(t)z(7(t)) =0, t=>to. (1)

The first systematic study for the oscillation of all solutions to Eq.(1) was
made by Myshkis. In 1950 [42] he proved that every solution of Eq.(1) oscillates
if

limsup[t — 7(¢)] < oo and ligninf[t - T(t)]li{ninfp(t) > é. (Cy)

t—o00 —0o0 —00
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In 1972, Ladas, Lakshmikantham and Papadakis [33] proved that the same
conclusion holds if

t
A = lim supf p(s)ds > 1. (Cs)
tooo Jr(t)
In 1979, Ladas [32] established integral conditions for the oscillation of Eq.(1)
with constant delay. Tomaras [54-56] extended this result to Eq.(1) with variable
delay. For related results see Ladde [36-38]. The following most general result is
due to Koplatadze and Canturija [25].

If
: 1
o := liminf p(s)ds > =, (Cs)
t—oco (t) [
then all solutions of Eq.(1) oscillate; If
¢ 1
limsup/ p(s)ds < =, (Ny)
bmoe Jalt] g

then Eq.(1) has a nonoscillatory solution.

In 1982 Ladas, Sficas and Stavroulakis [35] and in 1984 Fukagai and Kusano
[13] established oscillation criteria (of the type of conditions (Cs)and (Cs)) for
Eq. (1) with oscillating coefficient p (t).

It is obvious that there is a gap between the conditions (C5) and (C3) when
the limit tlixgo f:(t) p(s)ds does not exist. How to fill this gap is an interesting

problem which has been recently investigated by several authors.

In 1988, Erbe and Zhang [12] developed new oscillation criteria by employing
the upper bound of the ratio z(7(t))/z(t) for possible nonoscillatory solutions
z(t) of Eq.(1). Their result says that all the solutions of Eq.(1) are oscillatory,
if 0<a<?i and

2
A>1-— -Z- (C;;)
Since then several authors tried to obtain better results by improving the upper
bound for z(7(¢))/z(t).
In 1991, Jian [20] derived the condition
2
o
A>1— ——— C.
> 2(1 —_ C€) ) ( 5)
while in 1992, Yu and Wang [63] and Yu, Wang, Zhang and Qian [64] obtained
the condition

l—a—+v1-20—a?

A>1-— 5 : (06)
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In 1990, Elbert and Stavroulakis [8] and in 1991 Kwong [30], using different
techniques, improved (Cj), in the case where 0 < o < 1, to the conditions

1
VAL

InA +1
Aneewl (Cs)
A1
respectively, where ); is the smaller real root of the equation \ = e®*.
In 1994, Koplatadze and Kvinikadze [26] improved (Cj), while in 1998, Philos
and Sficas [45] and in 1999, Zhou and Yu [65] and Jaro$ and Stavroulakis [19]
derived the conditions

A>1-(1- )2 (C7)

and

o? o?
—_— =
A>1 2i—a) 2 1, (Co)
l—a—+vV1—2a—ao? 1
A>1- -(1-—=)%, G
2 ( \/xl-) ( 10)
and
In\+1 l1—-a—+vV1—-2a—a?
A> X - 5 ) (Cu1)
respectively.

Consider Eq.(1) and assume that 7(t) is continuously differentiable and that
there exists § > 0 such that p(7(¢))7'(¢t) > 0p(¢) eventually for all ¢. Under
this additional condition, in 2000, Kon, Sficas and Stavroulakis [22] and in 2003,
Sficas and Stavroulakis [46] established the conditions

111/\1-{-1_1—-05——\/(1~a)2——4@

A>
A1 2

(2.1)

and

A O\

respectively, where
e’ — N\fa—1

= "Tnoe

and

M=1—a—\/(;—a)2—4e_
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Remark 2.1 ([22], [46]) Observe that when 6 = 1, then © = ﬁl;/\’\;lgﬁ-“—l, and
(2.1) reduces to
2
A>2a-+-)\——1, (Cr2)

1

while in this case it follows that M =1—a — £ and (2.2) reduces to

- 1HA1—1+\/5—2A1+2C¥)\1

A
A1

In the case where o = 2, then A; = e, and (Cy3) leads to

V7T —2e
e

A = =~ (0.459987065.

It is to be noted that as @ — 0, then all the previous conditions (Cy) — (Cys)
reduce to the condition (Cs), i.e.

A>1
However, the condition (Ci3) leads to
A>+/3-1=0.732,

which is an essential improvement. Moreover (C3) improves all the above con-
ditions when 0 < o < % as well. Note that the value of the lower bound on A
can not be less than

é ~ 0.367879441.

Thus the aim is to establish a condition which leads to a value as close as possible

to 2. For illustrative purpose, we give the values of the lower bound on A under

these conditions when a = %

(Cy):  0.966166179
(Cs):  0.892951367
(Ce):  0.863457014
(C7):  0.845181878
(Cs):  0.735758882
(Cs):  0.709011646
(Cio):  0.708638892
(Cn1):  0.599215896
(Ci2):  0.471517764
(Ci3):  0.459987065
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We see that the condition (Ci3) essentially improves all the known results in
the literature.

Example 2.1 ([46]) Consider the delay differential equation

1
' (t) + pz(t — gsin® vVt — Eé) =0,

where p >0, ¢ >0 and pg=0.46 — 1. Then

t
1
o = lim inf pds = lim inf p(q sin® i =
t—+c0 pe

bz Jrw)

1
)=
and

b 1 1
A=1lim supf pds = lim sup p(g sin® vVt + 5{;) = pg + = 0.46.
T

t—co {t) t—co

Thus, according to Remark 2.1, all solutions of this equation oscillate. Observe
that none of the conditions (Cy4)-(Ci2) apply to this equation.

Following this historical (and chronological) review we also mention that in

the case where
t
/ p(s)ds >
T(2)

this problem has been studied in 1995, by Elbert and Stavroulakis [9], by Koza-
kiewicz [28], Li [40,41] and in 1996, by Domshlak and Stavroulakis [6].

t
and lim p(s)ds = L

=0 Jr(e) e

® | =

3 Oscillation Criteria for Eq. (2)

In this section we study the second-order delay equation
z"(t) + p(t)z(r(t)) = 0, t = to, (2)

For the case of ordinary differential equations, i.e. when 7(¢) = ¢, the history
of the problem began as early as in 1836 by the work of Sturm [47] and was
continued in 1893 by A. Kneser [21]. Essential contribution to the subject was
made by E. Hille, A. Wintner, Ph. Hartman, W. Leighton, Z. Nehari, and others
(see the monograph by C. Swanson [48] and the references cited therein). In
particular, in 1948 E. Hille [17] obtained the following well-known oscillation
criteria. Let e

lim suptf p(s)ds > 1 @.1)

t

t—o0
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or

t—o0

+co
]jminft/ p(s)ds > i, (3.2)
t

the conditions being assumed to be satisfied if the integral diverges. Then Eq.(2)
with 7(¢) =t is oscillatory.

For the delay differential equation (2) earlier oscillation results can be found
in the monographs by A. Myshkis [43] and S. Norkin [44]. In 1968 P. Waltman
[57] and in 1970 J. Bradley [1] proved that (2) is oscillatory if

/+mp(t)dt = +4o00.

Proceeding in the direction of generalization of Hille’s criteria, in 1971 J. Wong
[60] showed that if 7(t) > at fort > 0 with 0 < « < 1, then the condition

+oo
o il
hﬂg}fﬁft p(s)ds > o (3.3)

is sufficient for the oscillation of Eq.(2). In 1973 L. Erbe [10] generalized this
condition to

=

without any additional restriction on 7. In 1987 J. Yan [61] obtained some
general criteria improving the previous ones.

An oscillation criterion of different type is given in 1986 by R. Koplatadze
[23] and in 1988 by J. Wei [59], where it is proved that Eq.(2) is oscillatory if

+oo
1i{ninft/ @p(s)ds = E (3.4)
—00 ¢

t
limsupf T(s)p(s)ds > 1 (Cq)
tooo Jr(y
or
% 1
lim inf 7(s)p(s)ds > -. (Cs)
= Sy €

The conditions (Cs)" and (Cj3)’ are analogous to the oscillation conditions

t
A= 1imsup/ p(s)ds > 1, (Cs)
t=oo Jr(y
k 1
a = lim inf p(s)ds > = (Cs)
oo Jr) €

respectively, for the first order delay equation

z'(t) + p(t)z(7(¢)) = 0. (1)
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The essential difference between (3.3),(3.4) and (C5)’, (C3)’ is that the first
two can guarantee oscillation for ordinary differential equations as well, while the
last two work only for delay equations. Unlike first order differential equations,
where the oscillatory character is due to the delay only, the equation (2) can be
oscillatory without any delay at all, i.e., in the case 7(¢) = t. Figuratively speak-
ing, two factors contribute to the oscillatory character of Eq.(2): the presence
of the delay and the second order nature of the equation. The conditions (3.3),
(3.4) and (C3)’, (C3) illustrate the role of these factors taken separately.

In what follows it will be assumed that the condition

/ Oo7'(.9)1!}(5)035 = +00 (3.5)

is fulfilled. As it follows from Lemma 4.1 in [24], this condition is necessary for
Eq.(2) to be oscillatory. The study being devoted to the problem of oscillation
of Eq.(2), the condition (3.5) does not affect the generality.

In this section oscillation results are obtained for Eq. (2) by reducing it to a
first order equation. Since for the latter the oscillation is due solely to the delay,
the criteria hold for delay equations only and do not work in the ordinary case.

Theorem 3.1 ([27]) Let (3.5) be fulfilled and the differential inequality

7(t)

'(t) + (T(t) + éf(f)P(é)dﬁ) p()z(r(t)) <0

T

have no eventually positive solution. Then Eq. (2) is oscillatory.

Theorem 3.1 reduces the question of oscillation of Eq.(2) to that of the absence
of eventually positive solutions of the differential inequality

7(2)

T

z'(t) + (T(t) + fT(ﬁ)p(é)d§> p()z(7(¢)) < 0. (3.6)

So oscillation results for first order delay differential equations can be applied
since the oscillation of the equation

u'(t) + g(t)u(b(¢)) =0 (3.7)
is equivalent to the absence of eventually positive solutions of the inequality
uw'(t) + g(t)u(8(t)) < 0. (38)

This fact is a simple consequence of the following comparison theorem deriving
the oscillation of (3.7) from the oscillation of the equation

V'(t) + h(t)v(o(t)) = 0. (3.9)
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We assume that g, : Ry — R, are locally integrable, §,c : R, — R are
continuous, §(t) < ¢, o(t) < t for t € R., and 6(¢) — +oo, o(t) — +oo as
t — +oo.

Theorem 3.2 Let
g(t) > h(t) and 6(t) <o(t) fort e R,
and let the equation (3.9) be oscillatory. Then (3.7) is also oscillatory.

Corollary 3.1 Let the equation (3.7) be oscillatory. Then the inequality
(3.8) has no eventually positive solution.

Turning to applications of Theorem 3.1, we will use it together with the
criteria (Cs) and (Cj3) to get

Theorem 3.3 ([27]) Let

t 7(s)
K= limsup/t) (T(S) + g §T(§)p(§)d§) p(s)ds > 1, (e

t—o0 (

or
t

7(s)
k := lim inf (T(s)+ : §T(£)p(£)d§) p(S)ds>é- (Cs)”

= Jry)

Then Eq. (2) is oscillatory.

To apply Theorem (3.1) it suffices to note that: (i) (3.5) is fulfilled since
otherwise k = K = 0; (ii) since 7(t) — +o00 ast — +o00, the relations (C,)", (C3)”
imply the same relations with 0 changed by any T' > 0.

Remark 3.1 ([27]) Theorem 3.3 improves the criteria (C,)’, (Cs)’ by Ko-
platadze [23] and Wei [59] mantioned above. This is directly seen from (C5)”, (Cs)”
and can be easily checked if we take 7(t) = t—7g and p(t) = po/(t—70) for t > 27,
where the constants 7o > 0 and py > 0 satisfy

< 1
T =
0Po &

In this case neither of (C5)', (C3)' is applicable for Eq. (2) while both (Cs)”, (Cs)"
give the positive conclusion about its oscillation. Note also that this is exactly
the case where the oscillation is due to the delay since the corresponding equation
without delay is nonoscillatory.

Remark 3.2 ([27]) The criteria (C2)”, (C3)" look like (C3), (Cs) but there
is an essential difference between them pointed out in the introduction. The
condition (Cs) is close to the necessary one since according to [25] if A < 1, then
(3.7) is nonoscillatory. On the other hand, for an oscillatory equation (2) without
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delay we have k = K = 0. Nevertheless, the constant 1/e in Theorem 3.3 is also
the best possible in the sense that for any € € (0,1/e] it can not be replaced by
1/e — € without affecting the validity of the theorem. This is illustrated by the
following

Example 3.1 ([27]) Let £ € (0,1/e], 1—ec < B8 < 1, 7(t) = at and
p(t) = B(1— B)aPt~2, where o = 1. Then (Cs)” is fulfilled with 1/e replaced
by 1/e —e. Nevertheless Eq. (2) has a nonoscillatory solution, namely u(t) = t°.
Indeed, denoting ¢ = B(1 — B)a™”, we see that the expression under the limit
sign in (Cs)” is constant and equals ac [Ina| (1+ac) = (8/e)(1+(B(1-28))/e) >
Ble>1/e—ce.

Note that there is a gap between the conditions (C)”,(C3)” when 0 < k& <
1/e, k < K. In the case of first order equations the conditions (Cy) - (Cy3)
attempt to fill this gap. Using results in this direction, one can derive various
sufficient conditions for the oscillation of Eq. (2). According to Remark 3.1,
neither of them can be optimal in the above sense but, nevertheless, they are of
interest since they cannot be derived from other known results in the literature.
We combine Theorem 3.1 with the result ([19], Corollary 1) to obtain

Theorem 3.4 ([27]) Let K and k be defined by (Cs)",(C3)", 0 < k < 1/e

e 1 1k VIR
k) 2
where A(k) is the smaller root of the equation A = exp(k)). Then Eq. (2) is
oscillatory.
Note that the condition (Ci;)’ is analogous to the condition (Ci;).

K>k+

(Cu)'
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A STEENROD-MILNOR ACTION ORDERING ON DICKSON
INVARIANTS

NONDAS E. KECHAGIAS

ABSTRACT. Let f: (BE(z1,...,2x) @ Ply1, ...,yk]}GL" — (B(z1,...,zk) ® Ply1, ..., yz]) T E*
be a degree preserving Steenrod module map such that f is an isomorphism on

degree 2pF~1(p~1). Using a particular ordering depending on the dual Milnor

basis we show that f is an upper triangular map, hence an isomorphism.

1. INTRODUCTION

Motivated by topological questions regarding the cohomology of an infinite (fi-
nite) loop space and influenced by the work of Campbell, Cohen, Peterson and
Selick in [1] and [2] we study the problem under which conditions is a Steenrod
module map between the full rings of invariants of GL(k,Z/pZ) an isomorphism.
In a sequel we study the same problem between certain quotients of the full ring
of invariants [4]. It turns out that although the same result holds its proof is more
technical.

It is known that given a monomial d” there exists a unique p-th power Steenrod
operation PP" of smallest degree such that PP"d™ # 0. Thus there exists a set

consisting of p-th powers of generators df: such that d{z \d* and t; +i—1 = m.
It is obvious that PP ... PP"™d" £ 0. We are interested in finding the longest such
sequence of Steenrod operations. Of course it depends on m and i. The required
sequence shares the property that PP prTgn g also a monomial according
to proposition 1 e). We call such a sequence a Steenrod-Milnor action on d=.
Now we iterate this procedure on the monomial PP*...PP™ 4" until the resulting
monomial is dfu for the smallest p9.

Theorem 5 There ezists a sequence of Steenrod-Milnor operations PT such that
Pram =y, Here \ € (Z/pZ)".

Next, given two monomials d” and d* we define an ordgring according to their
first different Steenrod-Milnor actions PP*“ .. PP™ and Ppt"“f) PP We call this

action a Steenrod-Milnor action ordering. Using this action we prove the following
Theorem:

Theorem 6 Let f : (E(z1, ..., zk) ® Ply1, ..., y)) ™ — (E(zy, s T) ® Plyy, ooy yi]) O 2F

be a Steenrod module map which preserves the degree such that fldrp—1) = Adg k1
for A € (Z/pZ)*. Then f is a lower triangular map with respect to S-M ordering
and hence an isomorphism.
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A consequence of this result is the well known Theorem of Campbell, Peterson
and Selick:

Theorem [1]Let f: Q5S> — QS be an H-map which induces an isomor-
phism on Hy,_3(Q§°5°°; Z/pZ). If p > 2 suppose in addition that f is a loop map
or that

fa(dz,0)™ = Mdz,0)*

for some A € (Z/pZ)*. Then f;) is a homotopy equivalence. Here (da)* is the
hom-dual of the top degree Dickson generator in Ds.

2. A STEENROD-MILNOR ACTION ORDERING ON DICKSON INVARIANTS

We shall recall some well known Theorems concerning the action of the Steenrod
algebra on Dickson algebra generators. Let us also recall the full ring of invariants
of GL(k,Z/pZ).

Let E} stand for E(z1,...,zx) and Si for Plyi,...,yx]. Here |z;| =1 and |y;| = 2
with Bz; = y;.

Theorem 1. The Dickson algebra SpCL* is a polynomial algebra on {dk,0; -1l k—1}-

The Dickson algebra generators are defined bellow.

Theorem 2. [5]The algebra (Ej, ® )L+ is a tensor product between the polyno-
mial algebra Dy and the Z/pZ-module spanned by the set of elements consisting of
the following monomials:

My, s L2725 0<1<k-1, and0<s; <--- <5< k—1.

Here | = 0 implies that My = z1...zi. Its algebra structure is determined by the
following relations:
) (Migsy,..s s LE2)2 =0 for0<I<k—1,and0<s; < - <5 < k—1.

k=l
b) Mussy,..,s LE ity = (~)® DD M o IR
B i 30, k—st,.,k—
Here0<I<k-1,and0<s1<--- <5<k —1.
The elements above have been defined by Mui in [5] as follows:
T e T
: : (51 Ig
M 1 x % | Lk’iL B yi yh
kis1,..,8 = (& —1D)! y,;r‘l x o y;f 1 kg = I ki = . .
- a K k
. : A
5) sp
i vk

Here there are k — [ rows of z;’s and the s;-th’s powers are completing the rest of
the first determinant, where 0 < s; < --- < 5; < k—1. The row yfyi is omitted
in the second determinant. Ly := Ly j.

|Miss,...ose| =k =1+ 2(p™ +---+p*) and |Lgi| = 2(1 +--- + p* - p).
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. Ori-1, fj=1i-1
Theorem 3. [3|1) P” (d;) = { —drdrp—y, fj=k—1
0, otherwise
Mk;sl,...,st+1,...,s; -indz;' J=5t, ser1F st +1
(0 —2)My;sy,.. L} “drp—1;i=k—-1,81# k-1

2) ij (Mk;sl,...,sz Li—z) = "L£_2(Mk;51,---,szdk=k-1 + ” Z }(_l)th;Sh---,S(:,---,szdk.é‘:);
S 81 5---,8]
=k, sp=kei
0,’j =S:—1 = St-1, l—1=st,k

Lemma 1. PP (d,’;z) = —d’,;,z. -1 Ft=1+k-1 -

0, otherwise

k=1
Theorem 4. [3]1) Let g > 0. Ifq = > arp*tt such that p—1> a; > apq >
a1 =0. Then '
1 ! k=1 7 g, E s =ttt}
Py = o (2 e

T

Otherwise, P'i’a,”,,i_jU =0.

2)Letq= Y ap't' > 0 such thatp—1>a; > as_1 > a; >0 and a; +1 >

s
Gi—1 2 ap 2 a1 = as—1 = 0. Then

k=1 . i—1 =1
qug’:i e d:;zi(._l)ak—l ( H ( ai )) (a: + 1) (H ( ag )) H dilga'!—a’t—l)
' ’ it1 \@t—1 Gi1 o Ny Lk,

Here as—y = 0. Otherwise, quf,o =0.

Remark 1. Please note that the case a; = 0 and a;_1 = 1 is allowed in the Theorem
above.

We shall apply formulas above on a Dickson algebra monomial starting with the
lower non-zero p-th power.

Definition 1. Let n = (ng,...,nx—1) be a sequence of non-negative integers and
1(3)

d™ = []dy; a monomial in the Dickson algebra. Let n; = 3 a;;p™+* be the n;’s
i t=0

p-adic expansion with [Ja;s # 0. a) Let M := {mg, m, s My(my | My < M1} =

{not+k—1,ms+i-1]0<t<I0),1<i<k-1and0<s<I()}.

b) Let I(my,n) := (i1,...,%r) such that m; =noy +k—1=mn; ¢ +i.—1 and

; . J maxI(mj,n), if 0 ¢ I(mj,n)

Imim) =\ k, if 0 € I(my,n) '

¢) Let PY(™) stand for the Steenrod operation PP™ PP™ "% PP Let us
call P'(™D o Steenrod-Milnor action of type (m, ).
Proposition 1. a) Pr(mmk)df:{:‘ == ——di{’;o. Here mop=mng+k—1.

ng+1

b) Primok)  primok) — _ """ Here mg =ng+k—1.

r—1




90 NONDAS E. KECHAGIAS

¢) Let d* € Dy, and mg € M, then
PP = X g pdrd T A PR
0<i~€I(mo,d™) ’ '
d) Let d* € Dy, and mg € M, then

"ir(mg,n) 0 —p H(mgmn)®
Pr(mosizimg,m)gn — “inmo.n)’of’f:‘fi,ﬂ dk,ir(mo,n) » 40 ¢ I(mo,d")
—agod™dy 5, if 0 € I(mg,d™)
e) Let d" € Dy and my € M, then PL(moiiztmom) | Pr(mosiztmo.m)gn —

'

%1 (mg,n)©
*ir(mg,n)®
or

ng 0
I({mg,n)’ R
© %1 (mg,n) 0P

@i op
. n I(mg.n)’
(all(mo,n) :O) !d dk,o k. '1_[(,.”_0 n)

Primok)  primok) gn — (_qyp—1-ao, D_{%dudﬁno oF1 k—c{z}o ,0p"0:0

p—1l-ap,0

Proof. a) By lemma 1 P?' JPO_O ft#l+k— la.ndPJ’PczIIJ =0,ift#1l+k—-1
or [ +1i—1. Now the statement follows using Cartan formula

b) is an application of a).

c) Since mo = max M , Theorem 3 and Cartan formula implies the statement.

d) Letmg=ng+k-1=n,-+i—1forz’>0 By lemma 1
prPTOT ppToTHE | ppTe d{: = prT b0 = PP P o = 0. Now the statement
is an application of c¢).

e) This is a repeated application of d). Two main cases should be considered
depending on ¢7(mm,,n). Moreover, the number of times the S-M operation has to be
applied depends on a;, (mo.my,0- Ve describe the first step in details. The next steps
I(mg,n)° _p“"f(mo,n)"’. Let

follow the same pattern. Let us compare d" and d"dg bt omom)
I(mg,n

M and M’ be the corresponding sets defined in definition 1.

Let i1(mo,n) > 0, then i (gm0 T k—1>mo. If Qifimgimys0 = 1 and I(mg,n) =
{i1(mo,m) }» then m = min{mq,ns; . .04k — 1} > mo. Otherwise, mf = mo.

Let i3, (,,, .0 = 0 and ag,0 < p— 1, then mg = mg. Otherwise, my = mo + 1. Now
the statement follows. [§

Let us comment on the statement of last Proposition. Let d* be a monomial
and d™ the resulting monomial as in the statement of e) above. If for each index
ir € I(mg,n) a suitable Steenrod-Milnor operation is defined, then the smallest
p-th component of exponents of di;’s are reduced and that of dj¢’s is increased
respectively.

Corollary 1. Let d" € Dy, and ir, € I{mo,n) = {iry, .yt }- @) If0 < i, , then

(o]

( @;p,0p " t:0)
I(mo,ir, ) pL(mo,ir T(mo,ir, ) Jn _ 0<ir€I(mg,n) —a,,. op™ir:0
plimoic, ) p 2, Primoin)dn = \dnd, S [1 ds
ai.. o ai.. o ai ir€l(mo,n)
irg s irg 1,0
b) If 0 =i, then
) (rootiy 2 @i ,0p "t 0) -
PI“(mo yirg) Pr(mo,zr,)PF(mg,k)dn = \d*d 0<ir&l(mg,n) H d- 80P e
k.0 k,i
R R — ) : 2
ir€llmom)

Gip, ,0 @i, ,0 P—l=ape

Here A € (Z/pZ)*.

Proof. This is an application of Proposition 1 e). §
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Let d® be a monomial and d* the resulting monomial as in last corollary. Let
M and M’ be as in definition 1, then mqg < mj.

Definition 2. Let m be a positive integer, I = (21,.-,%1) a strictly increasing se-
quence of integers between 0 and k — 1, and J = (a1,...,a1) a sequence of integers

between 0 and p — 1. We deﬁng primI,J ). the following S-M operation:
@) §f iy =0, Primdd) = phimda)  plim.a) plim.k)

ag ; (0»1 p—l—a;
: T(m,I,J) — pT(m,i1 T (m,i;)
b) If0 < iy, P P P .
al ay

Theorem 5. There ezists a sequence of Steenrod-Milnor operations PT such that
I(n
PTd™ = A, . Here \ € (Z/pZ)*.

Proof. We shall describe an algorithm which constructs the required sequence. This
algorithm depends heavily on last corollary.

Step 0. Let PT = PO,

Step 1. Given d” define I(mg,n), J(mo,n) = (as, 0, ..., s, 0) and ir(I(mo,n)) 8S
in Definition 1 b). Define PT := pI'(mo,l,.J) pT'

(. = @ip0p 00
Step 2. Define d := Adnd,’S*<imom : [ B
P & Delne a7 = AdTay o i or
i~€I(mo,n)
(pk0.0+1+0<_ E);( )aihepﬂihc‘) in,0
ir ™mg,n —Qj,. 0D T .
Adrdy d i given by corollary above.

i€l (mg,'n.)
If n; > 0 for some ¢ > 0 or ny # p*™ for some positive integer I(n), then proceed
to step 1. Otherwise, the required sequence is PT. J

Lemma 2. Let d* and d* be monomials and {M, I(mg,n), J(mg,n)},

{M’, I(mg,n'), J(my,n)} their corresponding sequences.

a)’Ifmg = myg, I(mo,n) = I'(mg,n’), and J(mo,n) = J(mg,n’), then PT(mo.1:7)(gn_
Y =0,

b) If mg = my, I(mo,n) = I'(mg,n’), and 3tg > 0 such that Qiyy,0 > agto,o, then
PF(mD,I,J)(dn _ dn’) - Pl"(mo,I,J) (dn)

¢) If mg = mg, I(mo,n) = I'(mo,n’), and 0 < agp < apo, then PL(moLJ)(gn —
dnf) - Pr(mo,I,J)(dn)_

d) If mg = mg and either 0 ¢ I(mg,n)NI(mg,n’) orago = ap o, then PT(mo.LiJ) (gn
dn’) - PI‘(mo,I,J){dn).

e) If mg = my and either 0 < agg < ap,p or 0 = ag g < agy, then Ly S
dn') = PT(mo,L3) (gm),

f) If mo < myg, then PT(mo.ls0)(gn — gn'y = Prmo.L.J)(gn).

PT as in the last Theorem is a repeated S-M action. Applying lemma above we
define an ordering in D; using the corresponding action and call it a Steenrod-
Milnor action ordering and write S-M ordering.

g ) (&) ,
Definition 3. Let d", d* € Dy and n; = . @ip™t, m; = Y ajp™it. Here
=0 =0
[Ta:it[1ali, #0. 1) i) If mg < mf, we call d* < d™.
Bt at

i) If mo = my and one of hypotheses of last lemma is applied, we call d* < d™ .
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iii) If mg = mg and none of hypotheses of last lemma is applied, then the or-
dering is defined according to monomials PT(mo-li))gn gnd PT(moLd)gn’  Here
= (ail,g, ...,ail,g).

Next we extend the previous ideas to exterior monomials.

Lemma 3. 1) Let My, ... 5, LZ~?d" be a monomial in (E(z1, ..., zk) ® Plyy, ..., yi]) G L
and PB .= gPP°3... PP~ prlg pr*T' Tt pr | pP*T* P Then
S—— ™ -

—— v =

PB My, L272d™ = (—1)*—1=1g, odn
If 51 = k — 1, then the result follows applying
PB.=pgpe'p.  pr T prPgprtTiT pptt | pr*Tt prtiot
—— - . . - ~~

2) Let Mk;sl,_,_,s'[Lﬂ_zd" and Mk;srpm,s;,Li—zd” be monomials such that s;_; <
su_, and t is minimal with this property, then JF’BM;C;Sr1 - Li_2d”"' = 0. Here PE
is as in 1).
Proof. Let us reca]}1 that PP™ (Mk;sh_,_,s,Li_z) = Mk;sll,__,sl_l,s,_;_lLi_z for g <
k—landPPs’dZ;‘ft Z0ifandonlyif ng = s —t+1for0 <t < s +1. If

0 = s;, we apply the Bockstein operation 3. Thus PP*~*.. pp™ Mz i L§—2d” =
k—1—s;
Mis, s 508 Li_zftl. Here f;, is a polynomial in Dy.

v

0
Let PE = pP"~

- Jo—2

“..PP" . PP"T°..PP" Iterating the last formula we obtain:

v v

I Sq+1ttg+1—8g

E p—2 _ p—2
£ Mkisly---:lek d" = E ZD: Mk;31+51,---,51-1+tt—1,31+t:Lk ftl,---,tz
g=1

Here s;1; =0and 1 =k —1.

Let us suppose that s; +t; < k— . Let P2 = pP™~ 2...Pi"°ﬁ and

A= Mk;-‘il-i-tl,-...Sz—1+t1—1,31+t1 Lﬁhszfth___,tl- There are 8141 -1 S k—1-2 pOSitiOIlS

k—1—-2 (e]
...PP g3

Since there are k—I ’s in this sequence and only s;+t; —1 < k—[—2 positions, it is

obvious that P24 = 0. Now suppose that s; +t; = k — [ and one operation PP of

P2 is not applied on A. Then it will be less positions than the number of remaining

0 hol o s
@s. Inthat case PP ... PP " PP’ B Msor 10, sisiteorioncte L2 2 for.ts = 0.
The claim follows. [
Definition 4. 3) i) Mis,,..., L2 2d" < My, s, 272", if di0d™ < d 0d™ .

#) Mioy,...s L} 20" < Miey ot LE2d" , if 5, < s} and t is mazimal with this
property.

1—

to be filled by powers of y's using Steenrod operations: Ppoﬁ vis PR
S——’

Remark 2. Because of our definitions, the S-M action ordering is a total ordering.

Corollary 2. Let My, ,...s, L£_2d” € (Er.® Sk)GLk. There exists a sequence of
S-M operations PT(Mxssy.... W LEP ) such that

1= 1—

Plxod®) gpr®g  pr*~'7%  pr°g pr*~

—

1 k=2 S L q
PP BT P M, DO = 2

e
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and q is minimal with this property.
Here A € (Z/pZ)*.

Now we are ready to proceed to our main Theorem.

Theorem 6. Let f : (B, ® Sk)%* — (Ei ® Sx)GL* be a Steenrod module map
which preserves the degree such that f(dix—1) = Adik—1 for A € (Z/pZ)*. Then f.
is a lower triangular map with respect to S-M ordering and hence an isomorphism.

Proof. By hypothesis and Theorem 3, fldi,i) = Adpy for i = 0,...,k — 1 after
applying a suitable Steenrod operation.

Let d* € Dy and (d"®, ..., d™!19"D)) the increasing sequence of elements of
1|d|
degree |d"]. Let f(d") = Y a,d™¥. Claim: If d*(*) = d", then a; = Omodp for

" s bt
t < to. We use induction on t for t < ¢,. Pr@ m)f(d”) = pr@®) 3 ad®)
=1

,- ey 171
implies a; = Omodp. PT@* ™) f(gn) = pr@®) 3 a:d™® implies a; = Omodp
t=i
for i < 9. Now using Proposition 1 and the fact f(dy o) = Ad,o for A # Omodp,
we conclude that at, # Omod p. Hence f is a lower triangular map.
Because of the direct sum decomposition of the ring of invariance, it follows that
f(Mk;sl,...,s;L£_2dn) = aMk;sl,...,s; Lz_zdz then

BPP°B... f?""‘j PP gprt T prt fP"i..PPs'l F(Migs,.... s LE72d™) = Ady od
and the claim follows. JJ

Remark 3. Please note that for k = 1 it suffices to require f(My,1 L2™%) = MMy, L2732,
since B(My1LE7%) = dy o.

Corollary 3. a) Let S(Ej ® S.)%* be the subalgebra of (Er ® Si)%L* generated
by
{dk,z'}Mk,sl,...,skﬂl:-Mk,s’l,...,s;e_s,k—l} where 0 < i <k—1,0< 8 < ... < 541 <
k—1and0<s) <..<s_3<k—2 If f: S(Er®Si)CL — S(E @ S))CLx
satisfies f(dr,x—1) = Mg, k—1, then f is an isomorphism.

b) Let I[k] be the ideal of S(Er®Sk)SL* generated by {deitis Mins., .. 0 55 Mkﬁir--:sk_a:k—l}’
then the induced map f which satisfies f(dy) = Adg,0 is also an isomorphism.

Corollary b) above is a reformulation of Theorem 4.1 in [1]. We close this work
by applying last corollary in the mod —p homology of Q5°.

Let R =< QUA|I = (41,...,in),J = (é1,...,64) > be the Dyer-Lashof alge-
bra, then H.(QoS% Z/pZ) is the free commutative algebra generated by P(R) sub-
ject to the following relation QU-/) ~ (QU-I))P if I = (i;,I') , J = (0,J’) and
exc(QP7)) = 0. Here @ : R — H,(QoS%Z/pZ) is the A.-module map given
by ®(QU7)) = QU] x [—p*D)], [1] is a generator of Hy(S%Z/pL), [r] = [1]"
and [(I) is the length of I. Thus there exists an A.-module isomorphism be-
tween the generators of H.(QoS%Z/pZ) and the quotient R/QuR where QuR =
{Qeze(I,J) = 0}. It is known that R[k]* = S(E, ® Si)5L* as Steenrod al-
gebras and (R/QoR)[k]* = I[k] as Steenrod modules. Here R = @0 R[k]. Now the
following Theorem is a consequence of last corollary.

Theorem 7. [1]Let f : QFS™ — QPS> be an H-map which induces an isomor-
phism on Hap_3(Q°S>; Z/pZ). If p > 2 suppose in addition that f is a loop map



94 NONDAS E. KECHAGIAS

or that
fi(d2,0)* = A(d2,0)"

for some X € (Z/pZ)*. Then f is a homotopy equivalence. Here (dp)* is the
hom-dual of the top degree Dickson generator in Ds.
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